Witold Jaworski

Blender* [C\Users\me\eclipse-workspace\Boolean\blel

A File Edit Render wWindow

Help Layout Maodeling
g~ wview Text Edit Format Templates B~ Rrun-other.py
e o o
12+ W ObjectMode v wiew Select Add Object

Sculpting

Uy Editing

i x

1, Global v (P~ &) ubv

PTTHON INTERACTIVE COMSOLE 3.7.@ (default, 2u

Command History: Up/Down Arrow

Cursor: Left/Right Home/End
Remove Backspace/Delete
Execute: Enter

Autocomplete: Ctrl-Space

Zaom Ctrl +/-, Ctrl-Wheel

Builtin modules: bpy. bpy.data, bpy.ops
Convenience Imports: from mathutils import *;
Cohvenience Variables: C = bpy.context, D = b

s

~ Console Autocomplete lcon Wiewe

bpy.ops. transform, translate (value={0, @, @},
1), orient_matrix type='GLOBAL', constraint_a
proportional_edit falloff='SMOOTH', proportiso
ected=False, release confirm=True}

L‘J Scroller Activate L‘_‘]WI Drag and Drop [

& Console

Debug Server
¥

Source

return

Navigate

"

Texture Paint

EEE

n o

Search

Shading Animation 85 scene EX &y view Layer [
Register Run Script -t:" |_|E|" /O V" ‘—L-‘l’
= .
- = Scene Collection
. Tl
|- & = Sl v M 5 collection Lo
'
1o}
' =
. 10}
= = 102
Lg ‘.2 cCamera Q @
v cbe LY ©
vV cylinder 27 ©
=0 Lght © @
T=v S~ Edit jel + — o Keyir
v A Elendfile Data
Filenarne
File Has Unsaved Changes b
File is Saved b

ie\boolean-2.blend]

ct Pydev Run

4 ¢ MainThread - pid_1
= ition [api_test.p
[api_test.p

ring ident + "\

format_arg
get
pop

Programming Add-Ons
for Blender 2.8

Writing Python Scripts

with Eclipse IDE

version 2.0

Programming Add-Ons for Blender 2.8 - version 2.0
Copyright Witold Jaworski, 2011-2019.

wjaworski@airplanes3d.net
http://www.airplanes3d.net

This book is available under Creative Commons license Attribution-NonCommercial-NoDerivs 3.0 Unported.

ISBN: 978-83-941952-1-2

http://www.airplanes3d.net/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1 Software Installation 3

Table of Contents

Table Of CONENTS ...t e e e e b bt e e e e bt e e e e bt e e e e e br e e e e e bbe e e e annees 3
] (g o (U1 i{o o HA PO UP T OPPPROPPRR 4
(070101714 | o] o SO SRR P PP VPP 5
(=T =T = 11T 1SR 6
Chapter 1. Software INStallationooooii et e e e s e e e e e e e s e eeeeae s 7
1.1 Python (Standalone iNtErPreter)..........cueieiiii i e e e e e e e e e e e e e e e satreeeeeaeeeeaaanes 8
L2 o 1] Y= = PP PPPPPPPPt 11
IR TR = V1 - OSSPSR 14
Chapter 2. IntroducCtion 10 ECHPSEeuiiiiieeiiieie e e e e e e e e e e e e e e e e nnneeeeaaeeeas 18
N B O =% i o = T 4 TN o] o] = o A UUTRNE 19
2.2 Writing the SIMPIEST SCHPLeoiiiie e e e e e e e e s ee e e e e e e e s annneneeeeaeeeeaannes 24
PR B B 1Y o 18T T 19T I PRSP 29
Creating the BIender AQA-ON ...t e e e e et e e e e e e e e et e e e e e e e e sesbrareeeeeeeeesnsseeees 33
Chapter 3. BasiC PYthOn SCHP ... e e e e e e et e e e e e e s aaareeeeaa e s 34
3.1 Problem fOrmMUIGLIONoii ettt ettt e e e b e e anaee s 35
3.2 Adapting Eclipse t0 BIENAEI AP ... ittt 39
3.3 Developing the core Code..........oooiii 47
3.4 Launching and debugging Blender SCriPLScooiiiiiiiiii e 53
KRS I [0 o £e)Vi T a T I TN =T 4] PRSPPI 61
3.6 Handling the runtime errors and USEr MESSAQESccceeeiiiiii i, 71
Chapter 4. Converting API Script into Blender Add-On.........c.oooiiiiiiiiiiiee e 77
4.1 Adaptation of the SCrpt SITUCIUIEooiiiiii e 78
4.2 Adding operator command to @ BlIeNder MENUcooiiiiiiiiiiiiie e 88
4.3 Dynamic interaction With the USEIe i e e e e e 95
4.4 Keyboard shortcut and @ PIi€ MENUeiiiiiiiiiiiie e e s e e e e e e s e 99
4.5 Implementation of the add-on preferences panel...........ocooiiiiiiiii 106
Y o] o 1= T Lo Y 114
Chapter 5. Installation DEtails s 115
5.1 Details of Python inStallationoooi e e 116
5.2 Details of Java Runtime Environment (JRE) installation...........cccoociiiiiii e 120
5.3 Details of Eclipse and PyDev installationscooiiiiiii e 122
5.4 Details of the PyDev CONfIQUIationooiiiiiiiiiiiii e e 129
5.5 Managing Eclipse project PerspeCliVESocuuiiiiiiieiie e 133
5.6 Configuring the running and debugging commands for standalone Python scripts..........ccccccccoiinnis 134
L0 0F=T o (=T G T) {3 1= 138
6.1 Updating Blender API predefinition filleSc..ooo i 139
6.2 Enabling Blender API code autocompletion in @ PyDev project...........cccccoviiiiiiieiiiiiiiiieeeeeee s 142
6.3 Importing/linking an existing file to @ PyDev project ... 145
6.4 Details of debugging BleNder SCIPIS........uiiiiiiiiiei et 149
6.5 What does contain the pydev_debug.py MOdUIE?c..oii i 160
6.6 The full code of the object booleans.py add-0Ncccuuuiiiiiiiiiiiee e 162
=110 [0 e =1 o] o |V SRS 167

Copyright Witold Jaworski, 2011-2019.

4 Preparations

Introduction

You can use Python scripts for extending the standard Blender function set with new commands. Many useful
add-ons were created this way. Unfortunately, Blender lacks an integrated development environment ("IDE") for
the script programmers. In its Scripting workspace you will find only Text Editor, which highlights the Python
syntax, and Python Console. This basic set is enough for developing simple scripts but lacks many tools which
you need for a bigger project. | especially missed a decent debugger.

In 2007, | wrote an article that proposed for this purpose two Open Source programs: SPE (the editor) and
Winpdb (the debugger). However, this solution soon became obsolete. In 2009 it was decided that the new,
rewritten "from the scratch" Blender version (2.5) will have a completely new Python API. What's more, devel-
opers have embedded in this program the new Python release (3.x), while previous Blender version (2.4) used
the older Python 2.x. In the Python 3.0 the backward compatibility with the Python 2.x was broken. In the same
time the SPE editor was abandoned by its author. (It happens to smaller Open Source projects — they are often
hobbyist enterprises). Thus, in Blender 2.5 we were again restricted to the standard tools.

In 2011 | proposed a new developer environment, based on another Open Source software. This time my choice
fell on the Eclipse IDE, enriched with the PyDev plugin. In that time both products had been developed for 10
years. Unlike SPE and Winpdb, these new tools are written in Java, thus they do not depend on a specific Py-
thon version. This was a better choice: actually (in 2019) Eclipse and PyDev are still alive, and my guide (“Pro-
gramming Add-Ons for Blender 2.5”) was useful for 7 years. It was the “version 1.0” of this book. Adaptations for
Blender 2.6 and 2.7 involved so few minor changes, that instead of updating the original PDF publication (which
would require a new ISBN number) | just listed them in the errata on this project page.

In 2018 Blender Foundation published the “beta” release of a new Blender version: 2.8. If it was a commercial
product, | am sure that they would assign this version a more significant number, for example “3.0”. Comparing
to the previous releases, this new Blender contains many significant improvements and new features. Its devel-
opers also decided to discard many old functionalities, breaking the backward compatibility of the data (*.blend)
files. There are also some changes in the Python API, so the add-on compatibility was also broken. Thus, the
time has come to write a new edition of this guide (“Programming Add-Ons for Blender 2.8”). Consequently, this
is the “version 2.0”.

| think that the best way to present a tool is to show it at work. In this guide | am describing creation of a new
Blender command that performs the Boolean operations (union, difference, intersection) on solids. (They are
often used in creation of various machine parts). This book requires an average knowledge of Python and
Blender. (Yet, you may know nothing about Python in Blender). To understand the part about creating the final
add-on (Chapter 4) you should also be familiar with the basic concepts of object-oriented programming such as
"class", "object", "instance", "inheritance". When it is needed (as at the end of Chapter 4), | am also explaining
some more advanced concepts (like the "interface" or "abstract class"). This book introduces you to the practical
writing of Blender extensions. | am not describing here all the issues, just presenting the method that you can
use to learn them. Using it, you can independently master the rest of the Blender API (for example, creating

your own panels or sophisticated menus).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

http://airplanes3d.net/pydev-000_e.xml

Chapter 1 Software Installation 5

Conventions

In the tips about the keyboard and the mouse | have assumed, that you have a standard:
e US keyboard, with 102 keys;
e Three-button mouse (in fact: two buttons and the wheel in the middle. When you click the mouse
wheel, it acts like the third button).

Command invocation will be marked as follows:

Menu->Command means invoking a command named Command from a menu named Menu. More arrows
may appear, when the menus are nested!
Panel:Button means pressing a button named Button in a dialog window or a panel named Panel.

Pressing a key on the keyboard:

[aieHK] the dash (“-“) between characters means that both keys should be simultaneously
pressed on the keyboard. In this example, holding down the [Alt] key, press the [K] key;
El, the coma (“,”) between characters means, that keys are pressed (and released!) one

after another. In this example type El first, then El (as if you would like to write ,gx”).

Pressing the mouse buttons:

left mouse button

right mouse button

BlE|E

middle mouse button (mouse wheel pressed)

Last, but not least — the formal question: how should | address you? Typically, the impersonal form ("something
is done") is used in most manuals. | think that it makes the text less comprehensible. To keep this book as read-
able as possible, | address the reader in the second person ("do it"). Sometimes | also use the first person ("I've
done it", "we do it"). It is easier for me to describe my methods of work this way.

" While coding and debugging | thought about us - you, dear Reader, and me, writing these words - as a single team. Maybe an imaginary
one, but somehow true. At least, writing this book | knew that | had to explain you all details of its topics!

Copyright Witold Jaworski, 2011-2019.

6 Preparations

Preparations

In this section, | am describing how to build (install) the required software (Chapter 1). Then | am introducing the
basics of the Eclipse IDE and its PyDev plugin (Chapter 2).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 1 Software Installation

Chapter 1. Software Installation

The integrated development environment, described in this book, requires three basic components:
- standalone (“classic”) Python interpreter (required for the PyDev);
- one of the Eclipse IDE “packages”;
- PyDev (an Eclipse plugin);

This chapter describes how to set them up.

| assume that you have already installed Blender. This book was written using Blender 2.80.

e Tools described in this guide require a 64-bit operating system. (For Windows 10 this is the default).

Copyright Witold Jaworski, 2011-2019.

8 Preparations

1.1 Python (standalone interpreter)

Blender comes with its own, embedded Python interpreter. Check its version first by switching to the Scripting
workspace and read the Python version number in the Python Console window. (It is written in the first line
(Figure 1.1.1):

ole Autocomplete
i L1 You can find this window in the Scripting workspace

FYTHON INTERACTIVE efault, Aug 2 B, 15:05:01] [M v 1900 &4 bit (AMDSA)]

Read the Python
version

; ops, bpy.props, bpy.ty bpy.context, bpy.utils, bgl, b1f, mathutils
om mathuti : from math import *
C =nh py . con t D=~"h Py . data

mand History:
r

Figure 1.1.1 Reading the version number of the embedded Python interpreter.

Blender in the figure above uses Python 3.7.0 (this is Blender 2.80). In principle, you should install the same
version of the standalone interpreter, but minor differences (especially in the third digit) are acceptable.

You can download the external Python interpreter from https://www.python.org/downloads/ (Figure 1.1.2):

Python

e python’ o, I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.7.3

Looking for Python with a different OS? Python for Windows,
Linux/UNIX, Mac OS X, Other

Want to help test development versions of Python? Pre-releases,

Docker images

Looking for Python 2.7? See below for specific releases

Looking for a specific

Click here to go to the A link to the default
Python releases by vergon num details page of this (32-b|t) variant
Python version

Release version Click for more

Python 3.7.3 March 25,2019 & Download Release Notes
Python 3.4.10 March 18,2019 & Download Release Notes
Python 3.5.7 March 18,2019 &% Download Release Notes

Figure 1.1.2 Selection of the Python version (as seen in May 2019)

The third digit in the Python version number is the number of its “service edition”. This kind of updates is dedi-
cated for minor bug fixes. That's why in Figure 1.1.2 | am choosing Python 3.7.3, because from programmer’s
point of view it is identical to Python 3.7.0, used in Blender 2.80.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

https://www.python.org/downloads/

Chapter 1 Software Installation

9

Since 2019 Eclipse has been released in the single, 64-bit variant. Thus, just in case, | will also install the 64-bit
variant of standalone Python interpreter. That's why | opened the web page that contains all the variants of the
selected Python version (Python 3.7.3 in Figure 1.1.2).

| scrolled down this web page, to find in its bottom lines the links to installation programs of all the Python “byte”
variants (Figure 1.1.3):

Files

Version

Gzipped source tarball

XZ compressed source tarball

Operating System Description

macOS 64-bit/32-bit installer Mac 0S X

macOS 64-bit installer Mac 0OS X

Windows help file

Source release

Source release

for Mac OS X 10.6 and later

for OS X 10.9 and later

MD5 Sum

2eel0f25e3d1b14215d56¢3882486fcf

93df27aec0cd18d6d42173e601ffbbfd

5a95572715e0d600de28d6232c656954

4cale30f48be690bfe80111daeed509a

| am downloading the 64-bit variant for Windows fob11d24sbcate3safaaashaocssre

Windows x86-64 embe?éabte zip file Windows

Windows x86-64 exe[’tabl& installer Windows
Windows x86-64 web-based installer Windows
Windows x86 embeddable zip file Windows
Windows x86 executable installer Windows
Windows x86 web-based installer Windows

for AMDG4/EMB4T/x64
for AMDE4/EMB4T/x64

for AMDB4/EME4T/x64

Figure 1.1.3 Downloading the 64-bit Python variant

For my computer, | downloaded the 64-bit variant for Windows.

Then | run the downloaded program (this is a standard Windows installer - Figure 1.1.4):

python

ﬂﬁ
windows

854ac011983b4c79937%a3baa3a040ec

a2b795634T76e9aa47i1189%9a53349383

047d19d2569c963b8253a9b2e52395ef

70df01e7b0c1b7042aabb5a3c1e2fhds

ebfl644cdcleeeebacc92afag49cfc0l

d3944e218a45d982f0abcd93b151273a

Install Python 3.7.3 (64-bit)

& Install Now

ChlUsers\me\AppDatatLocal\Programs\Python'\Python37

Includes IDLE, pip and documentation
Creates shortcuts and file associations

2 Customize installation

Choose location and features L\\,

Figure 1.1.4 First screen of the Python installer

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

File Size

22973527

17108364

34479513

27839889

8090273

7018568

26190920

1362888

6526486

25424128

1324632

profile

Default location of

N the Python folder

is in the local user

Install launcher for all users (recommended)

[] Add Python 3.7 to PATH Cancel

GPG

SIG

SIG

SIG

SIG

SIG

SIG

SIG

SIG

SIG

SIG

S

G

This setup program proposes creating a new folder for the Python binaries in the current user profile. You can
accept these settings. However, personally | do not like placing executable files in a subfolder of the
C:\Users\<user>\AppData\Local directory, because sometimes | need to search the application folders, and |
have difficulties to find them there. Fortunately, | have the Administrator rights to my PC, so | could to select in

the Customize Installation the “Install for all users” option. It creates Python folder in the C:\Program Files.

For details of this installation — see section 5.1 (page 116).

Copyright Witold Jaworski, 2011-2019.

10

Preparations

Before downloading the external Python interpreter, you can also check if you already have it on your com-
puter. Try to invoke in the command line following program:

python —--version

If a Python interpreter is present on your computer, it will launch the console, as in Figure 1.1.1. You can
read its version number from there.

It may happen that you will not find on www.python.org exactly the same Python version that is embedded
in your Bender (I mean the difference in the second digit of the Python version number). In such a case use
the newer version with the closest number. It will spoil nothing. Blender always uses its embedded inter-
preter, even when the standalone Python is available in your system. For example, if you use version 3.8 of
Python as the external interpreter, there should be no problem in writing scripts that are interpreted internal-
ly in Blender by its embedded Python in version 3.7. (In practice, differences between minor Python ver-
sions are not significant as long as you do not use the few new functions/extensions introduced in each
version).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

http://www.python.org/

Chapter 1 Software Installation 11

1.2 Eclipse

e Eclipse is a Java application, which uses the standard Java Runtime Environment (JRE). Since 2019 it
requires the 64-bit JRE variant. You can download it from www.java.com

(To learn more about the JRE installation details — see section 5.2, page 120).

Open www.eclipse.org/downloads and download the Eclipse installer (Figure 1.2.1):

#login #Manage Cookies

rE(::L I pS E Members Working Groups Projects More~- Q-

FOUNDATION

CRYSTAL REPORTS'
FOR ECLIPSE

Download Eclipse Technology [l
that is right for you GET CRVSTAL REPORTS FOR

ECLIPSE - FREE w

-
e
Download the o
Get Eclipse IDE 2019-03 setup program L
Install your favorite desktop IDE pac Eclipse Che is a developer A modern, open source software

workspace server and cloud IDE. development environment that
runs in the cloud.

Figure 1.2.1 Downloading an Eclipse package (as seen in May 2019)

When you run the downloaded program, it displays the Eclipse variants (packages) (Figure 1.2.2):

eclipse by Oomph

type filter text Q

The essential tools for any Java developer. including a Java IDE. a Git client, XML
Editor, Mylyn, Maven and Gradle integration

7 Eclipse IDE for Java Developers
s
1 \4\\:,
1

1
1
U o Eclipse IDE for Enterprise Java Developers
1
] o Tools for Java developers creating Enterprise Java and Web applications, including
i aJava IDE, tools for Enterprise Java, |PA, JSF, Mylyn, Maven, Git and...

| selected the JScript| - -/
IDE, but you can|----» =

choose another \

@ Eclipse IDE for JavaScript and Web Developers (includes

Eclipse IDE for C/C++ Developers

An IDE for C/C++ developers with Mylyn integration.

The essential tools for any JavaScript developer, induding JavaScript, HTML, €55,
XML languages support, Git client, and Mylyn.

Eclipse IDE for PHP Developers

b

The essential tools for any PHP developer, including PHP language support, Git
client, Mylyn and editors for JavaScript, HTML, CSS and XML.

Figure 1.2.2 Selection of the Eclipse variant

Copyright Witold Jaworski, 2011-2019.

http://www.java.com/
http://www.eclipse.org/downloads

12 Preparations

Eclipse is available in many different packages. Each of them is prepared for a specific programming language
(or languages). However, these packages are not fixed: you can still write a C ++ program in, let’s say, "Eclipse
for PHP Developers". Just add appropriate plugins for the C/C++ IDE! What you can see in Figure 1.2.2 are just
the most common packages (plugin sets). There is not any special “Eclipse for Python” package, so | suggest
choosing one of the packages with the least number of specific plugins: Eclipse for Testers or Eclipse IDE for
C/C++. (You can find detailed discussion of Eclipse installation on page 122).

When you click the selected item, it opens the new screen with installation options (Figure 1.2.3):

ECII pse by Oomph E

Eclipse IDE for JavaScript and Web Developers (includes
j@ incubating components)

The essential tools for any JavaScript developer, including JavaScript, HTML, €SS, XML
languages support. Git client, and Mylyn.

By default, Eclipse installs

/_ in the local user profile

N
Installation Folder C:\Users\me\eclipse\javascript-2D19-03| =

&/ create start menu entry

Start the

' create desktop shortcut/ installation

By default, Eclipse folders are placed in the local user profile. (In the figure above this is C:\Users\me directory).
The installer will create there a subfolder named eclipse. This directory will contain subdirectories for subse-
quent Eclipse versions (in Figure 1.2.3 this is javascript-2019-03, where “javascript” is the name of the package,
and “2019-03” denotes the Eclipse version).

Figure 1.2.3 Eclipse setup options

In one of the further chapters of this book we will search for a specific folder among the Eclipse files. (More pre-
cisely — among its plugins). That's why | am installing Eclipse in this default location: | hope that it will match the
corresponding folder on your computer.

When the application is installed, check if everything works properly. On the beginning, Eclipse opens the work-
space selection dialog (Figure 1.2.4):

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

v | Browse...

Workspace: V
¥ This is the local user home directory (Beware,
this is not the Documents subfolder!)

[[] Use this as the default and do not ask again

Figure 1.2.4 Selection of the projects folder

Workspace directory is the place for your projects. Each workspace contains its own set of the Eclipse prefer-
ences (including references to the standalone Python interpreter). By default, workspace folder is named
eclipse-workspace and located in the user home directory (as the folder with the Eclipse binaries). In Figure

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 1 Software Installation 13

1.2.4 this home directory is C:\Users\me. Note, that this is not the standard Documents subfolder, but its parent
directory! If you are used to keeping all the user data in Documents - just change this path. Usually you will
need a single workspace folder for all your work. Eclipse will create in this directory subdirectories for your pro-
jects. A single project subdirectory will contain your Python scripts together with other auxiliary elements (for
example — a Blender test file). You can organize them into a subfolder structure.

When you start Eclipse for the first time, it displays the Welcome window (Figure 1.2.5):

- X

File Edit Mavigate Search Project Run Window Help
Vﬁ' @%) Welcome 13] £ oA = &8

& .
% EC|Ip5e Welcome to Eclipse IDE for JavaScript and Web Developers
Workbench

g. Review IDE configuration settings [:j Overview
Review the IDE's most fiercely contested preferences Get an overview of the features
o Create a new web project = Tutorials
Create a new dynamically configured project that supports Go through tutorials
JavaScript, CSS, HTML, and other technologies
. ¥ Samples
Checkout projects from Git / o
oo . . ; Try out the samples
Checkout Edlipse projects hosted in a Git repository

R What's New
mport ;}l;7 ng projects : T -
“‘ _Mport existing projects Find out what is new

Import existing Eclipse projects from the filesystem or archive

Launch the Eclipse Marketplace
Enhance your IDE with additional plugins and install your
Marketplace favorites

oh o

Here you can turn off this window

D Open an existing file

Open a file from the filesystem

| Always show Welcome at start up

Figure 1.2.5 The Welcome window

Now you have to add the PyDev plugin to Eclipse. It will adapt this environment for the Python scripts.

Copyright Witold Jaworski, 2011-2019.

14 Preparations

1.3 PyDev

For PyDev installation use the internal Eclipse mechanism, designed for the plugins.

e NOTE: To perform steps described in this section, you need an Internet connection

To add a plugin, go to Help 2Eclipse Marketplace (Figure 1.3.1):

Help

Py

8 ge
(7) Help Contents
" Search

Show Contextual Help

Welcome

Show Active Keybindings... Ctrl+Shift+L
Tip of the Day

Tips and Tricks...

#h a

Report Bug or Enhancement...

Cheat Sheets...

Eclipse User Storage 3
Perform Setup Tasks...

))

ind and install
clipse plugins

mm

Check for Updates
Install New Software...
Eclipse Marketplace...’ |

L

0 |Ge &

About Eclipse IDE
Contribute

Figure 1.3.1 Opening the plugin list

In the Eclipse Marketplace window search for “PyDev” phrase (Figure 1.3.2):

1. Search here
for the ,PyDev”

plugin

Eclipse Marketplace

Select solutions to install. Press Install Mow to proceed with installation.
Press the "more info" link to learn more about a solution,

Find: TBEY A | Al Markets

Searchl Recent| Popular| Favorites| Installed | ;' 2019 in Focus

PyDev - Python IDE for Eclipse 7.2.0

PyDev is a plugin that enables Eclipse to be used as a Python IDE
ePYDEV (supporting also Jython and IronPython). It uses advanced type inference
techniques which allow... more info
by Brainwy Software, EPL
[DE Python Aptana Pydev Django ..

I 1463 #% | Installs: 1,17M (18 694 last menth)

v | | All Categories v| | Go

2. When you find it —
run its installation

Figure 1.3.2 Searching for the PyDev plugin in the Eclipse Marketplace window

When you find the plugin named PyDev — Python IDE for Eclipse, click its Install button. Then confirm the sub-

sequent screens: the default selection of the components, license terms.

Programming Add-Ons for Blender 2.8 — version 2.0

www.airplanes3d.net

Chapter 1 Software Installation 15

Finally, you will see a message about restarting Eclipse (Figure 1.3.3):

@ Would you like to restart Eclipse IDE to apply the changes?

" Restart Now |||

Figure 1.3.3 Final window

Do it (just in case).

Eclipse saves all of its settings in the workspace folder (see Figure 1.2.5). The reference to the default Python
interpreter is also among these parameters. Let's define it now. Start by invoking the Window>Preferences
command (Figure 1.3.4):

File Edit Mavigate Search Project Run | Window | Help

New Window

Editor 3

@ Welcome i3

& eclipse

&

&

Appearance 3

;e IDE for JavaScript and Weh

Show View 3

Perspective 4

Mavigation

Preferences

e TV
ngs [:] Ove

Review the IDE's most_ﬂercelv contested preferences Get :

T-.. Tute

Figure 1.3.4 Setting up Eclipse configuration for the current workspace

In the Preferences window expand the PyDev section, then in the Interpreters section highlight the item named
Python Interpreter (Figure 1.3.5):

| type filter text | | Python Interpreters Prmr >
" f'elreral . Python interpreters (e.g.: python.exe, pypy.exe). Double-click to rename. ~
1> Help
&> Install/Update Name Location | Browse for python/pypy exe|
1> JavaScript
& IS0M | MNew with Pipenv |
1> Mylyn A
H H P Cenfig first in PATH
» Oomph Highlight ... and click | Configfistin |
4 PyDev this item.... this button .’I Choose from list ”
Builders
» Debug Remove
1> Editor U
I+ Interactive Console E
4 Interpreters L Down
IrenPython Interpreter
Jython Interpreter 3 Packages | =i Libraries | Forced Builtins | Predefined | P& Environment | @ String Substitution Variables
Python Interpreter - -
Logging Library Version | Manage with pip |
PyUnit
Rﬂn | Manage with conda |
Crrimbimen Mol T 1

Figure 1.3.5 Invoking the searching for installed Python interpreters

Then click the Choose from list button.

Copyright Witold Jaworski, 2011-2019.

16 Preparations

After a while PyDev will display the list of installed Python interpreters (Figure 1.3.6):

Multiple possible interpreters are available,
Please select which one you want to install and configure.

& C:\Program Files (x86)\Python34\python.exe
& C:\Program Files (x36)\Python2T\python.exe
E C\Program Files\Python3T\python.exe |

Select this Python
version

Figure 1.3.6 Python interpreter selection

Select from this list the 64-bit variant that you have installed in the previous step (see page 8). In response Py-
thon will explore its folders and suggest adding some of them to the system PYTHONPATH list (Figure 1.3.7):

Select the folders to be added to the SYSTEM pythonpath!
IMPORTANT: The folders for your PROJECTS should NOT be added here, but in your project configuration,

Check:http://pydev.org/manual_101_interpreter.html for more details.

& C:\Program Files\Python3T\DLLs

&) C:\Program Files\Python37\lib

&) C:\Program Files\Python37

& C:\Program Files\Python3T\lib\site-packages

Select All not in Workspace | | Select All | | Deselect All |

Just confirm the
proposed set

Figure 1.3.7 Python interpreter folders to be added to the PYTHONPATH

You needn’t change anything here — just confirm this window clicking the OK button.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 1 Software Installation 17

In the result you will see the configured Python interpreter in the Preferences window (Figure 1.3.8):

| type filter text

[General
1> Help
i Install/Update
[JavaScript
&> JSON
[Mylyn
> Oomph
4 PyDev
Builders
1> Debug
1> Editor
| Interactive Console
4 Interpreters

Python Interpreters

GvyD v w

Python interpreters (e.g.: python.exe, pypy.exe}. Double-click to rename.

MName

@ Python 3.7 (64-bit)

e

Location
C:\PrograIFiles\Pyth on37\python.exe

Configured Python
interpreter

| Browse for python/pypy exe |

| Mew with Pipenv

|
Config firstin PATH |
|
Remove |

|
| Choose from list
|

Up

Down

IronPython Interpreter
Jython Interpretg
Python Interpreter

Legging

1
H} Packages| Eh Libraries |Forced Builtins | RAredefined | P% Environment | @ String Substitution Variables|
Systern PYTHOMPATH. Reorder with Drag & Dr:op.

PyUnit 4B Systemlibs R
Run = C\Program Files\Python3TWBtLs
Scripting PyDev &) C:AProgram Files\Pythof&7\lib
Task Tags &) C\Program Files\Python37
» Run/Debug & C\Program Files\Python3T\lib\site-packages
"""""""""""""""""" |'|"'"""""""""""""""""""""'""""""""""""""""""""T'""""""T o
. . Restore Defaults Appl
Click here to confirm | [ooy |
this configuration
@ m uﬁl 9 |Apply and Close| | Cancel |

Figure 1.3.8 Configured Python interpreter

By default, PyDev names this new interpreter as “python”. It appears under this name in all PyDev windows. To
make it more informative, | renamed it to “Python 3.7 (64-bit)”.

Save these settings by clicking the Apply and Close button.
To use this interpreter for running or debugging your Python scripts from Eclipse, you need so-called Run
Configuration. However, this is a local project setting (unlike the Python interpreter, which is set per work-

space). To create a Run Configuration for your project, you will need the (main) script file. For details see sec-
tion 2.2, page 26, and section 5.6, page 134.

Copyright Witold Jaworski, 2011-2019.

18 Preparations

Chapter 2. Introduction to Eclipse

Our project starts here. It will be an adaptation of the Boolean modifier. You will learn more about this in the next
chapter. In this chapter, except the names, our project has nothing in common with Blender, yet.

At the beginning, | want to show you the Eclipse basics. | will do it on the example of a simple Python script,
which writes "Hello" in the console window. | assume that the Reader has some experience in Python and has
already used other IDEs. This is not a book about any of these issues. My goal here is to show how to perform

in Eclipse some basic steps that are well known to every programmer.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse

19

21 Creating a new

Invoke the File >New >Project... command (Figure 2.1.1):

project

File | Edit Mavigate Search Project Run Window Help
| Mew Alt+5Shift+M » @ JavaScript Project
Open File... |rﬁ Project..
[} Open Projects from File System... 4§ JavaScript Source File
Recent Files 3 % | Folder
Close Ctri+W | [$ File
Close All Ctrl+Shift+W | |27 Untitled Text File
Save Ctrl+S |9 Example...
Save A =i Other. Ctrl+N
Save All Ctrl+5Shift+5
Revert
Move...
ﬂ Rename... F2
& Refresh F5
Convert Line Delimiters To 3
Print... Ctrl+P
fvg Import.
&4 Export...
Properties Alt+Enter
Switch Workspace 3
Restart
. blems % @ Documentation [, Declaration
it

Figure 2.1.1 Opening a new project

In the New Project dialog open the PyDev folder and select there the PyDev Project wizard (Figure 2.1.2):

Select a wizard

Wizards:

| type filter text

[> [General
[[JavaScript
4 [PyDev
m PyDev Django Project
48 PyDev Google App Engine Project

Select this

2 PyDev iject <
b= Web L
[= Examples

creator

Figure 2.1.2 Selection of the appropriate project wizard

Then click the Next button.

Copyright Witold Jaworski, 2011-2019.

20 Preparations

In the PyDev Project window enter the Project name. | am naming it Boolean (Figure 2.1.3), because in the
next chapter it will become a Blender API project implementing the Boolean operations.

PyDev Project
Create a new PyDev Project.

Enter the project name

Project name: || Boolear™

Project contents:
Use default A/_lPath to the project directory |

Directory | ChUsers\me\eclipse-workspace\Boolean Browse

Project type
Choose the project type
(®) Python () Jythen () IronPython

Grammar Yersion

| Same as interpreter

Interpreter
|Defau|t -- currently: Python 3.7 (64-bit)

Click here to configure an interpreter not listed.

Additional syntax validation: <no additional grammars selected.

() Add project directory to the PYTHONPATH

(") Create 'src’ folder and add it to the PYTHOMPATH

(") Create links to existing sources (select them on the next page)
(®) Don't configure PYTHOMPATH (to be done manually later on) |<— Select this

not need this)

Click this button, when done |

<Back || Next> W‘ Finish H| Cancel |

Figure 2.1.3 Filling the screen of PyDev Project pane

Select also the Don’t configure PYTHONPATH... option, leaving the remaining settings in their default state.
Click the Finish button, when done.

e PyDev grays out the Finish button when the Python interpreter is not yet configured (see page 15).

In response, the New Project creator displays a message (Figure 2.1.4):

This kind of project is associated with the PyDev perspective. Do you want to open
this perspective now?

|Enable this option to switch off this message |

Rernember my decisicn

Open Perspective | |

Figure 2.1.4 A question from the wizard.

Confirm it, by clicking Open Perspective.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 21

In response, PyDev creates an empty Python project (Figure 2.1.5):

File Edit Mavigate Search Project Pydev Run Window Help

M@ E-0- QS AL e e D, [Quick Access|

[# PyDev Package Explorer 52 = 0

Alternative window layouts 5= Qutline 17 &

, Hler ~ (project perspectives): something| Anoutlineis not 3+
+[ie Boolear] like Blender workspaces

Place for the logical
Project Explorer Place for the text editors structure of the
code from the active
text editor (classes,
methods, fields, ...)

Figure 2.1.5 PyDev perspective of a new project

What you see in the picture above is the default PyDev screen layout. In Eclipse you can have multiple screen
layouts, called project persepctives. The newly created project contains the default PyDev perspective. When
you try to debug your script for the first time, the IDE will ask you about adding another perspective: Debug.

Let’s start by creating in this project a folder for the source files. Highlight the project folder (Boolean), then se-
lect the New 2>Source Folder command from its context menu (Figure 2.1.6):

File Edit Mavigate 5Search Project Pydev Run Window Help
Erﬁvm.lluiﬂiaiﬁv OvaEB Qvi‘v_‘ v o vﬂj a T O T

[PyDev Package Explorer &2 = 0 =

2 _%-|Project context menu

-

o[l Boolearit- = =7~ (click [ZE])

| MNew » | Project...
Go Into |_<|> Eile
Copy £ Folder
Paste [Link to Existing Source
* Delete [F] PyDev Module
Move... 3 PyDev Package
Rename.. |E Source Folder
Remove from Context Ctrl+Alt+Shift+ Down
™ Bample...
i+ Import..
4 | Export.. T Other.. Ctrl+N
=] Refresh F5
Close Project

Figure 2.1.6 Adding a subfolder for the scripts

Copyright Witold Jaworski, 2011-2019.

22 Preparations

Type the subfolder Name in the wizard pane — let it be src (Figure 2.1.7):

Create a new Source Folder

— Name of the
pd scripts folder

Project| Boolean /
2

MName || src

@ Finish | |

Figure 2.1.7 Folder wizard pane

When you click the Finish button, PyDev will create this project subdirectory.

Let's create now an empty script file. Expand the context menu of src folder and invoke the New2>PyDev
Module command (Figure 2.1.8):

File Edit Mavigate Search Project Pydev Run Window Help
AnRAENEE- H=EE R R Rl -=I0 A SRURE I RA RIS

[PyDev Package Explarer Gontext menu of the

src folder (click |:1=])
41z Bool +
-] F| New » [Project..

Go Into |—_<I> File

Copy 9 Folder

Paste '] PyDev Module |
Delete {8 PyDevPackage Lo
Move...
Rename.. ™ Bample..
Remove from Context Ctrl+ Alt+Shift+Down | Y | Other... Ctrl+N

i Import. I

Figure 2.1.8 Invoking the new script (“module”) wizard

It will open another PyDev wizard window. Give this file a name that follows the rules for the Blender add-on
naming conventions: object_booleans (Figure 2.1.9):

Create a new Python module

Source Folder | /Boolean/src

Package | Enter the file name
(without .py extension)

|| object_booleans|

Figure 2.1.9 PyDev module wizard window

(The first part of the name — “object” - is the target Blender mode). Click Finish, when done.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 23

In the next dialog, PyDev asks about the eventual Python script template (Figure 2.1.10):

Template

<Empty> - !

Medule: CLI (argparse) L Select an empty file
Muodule: CLI (optparse)

Module: Class

Module: Main

Module: Unittest

Module: Unittest with setUp and tearDown

Config available templates...

®

Figure 2.1.10 PyDev module wizard window (continued)

Select the <Empty> template and click OK.

In response PyDev adds an empty script file to your project. It contains just a header docstring comment, with
the creation date and the author name (Figure 2.1.11):

File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help

N EHR®DiH-0 QB mEr D

[PyDev Package Explorer i3 = B [F] "obizct boolzans i1 |
=) <'q—>| oL v 1= 1~ |This asterisk indicates that the LI

T 9 .
creat=d on 2|file contains unsaved changes

41— Boolean
&[22 src
[F] object_booleans.py
b ¢ Python 3.7 (64-bi ... thon3T\python.exe)

2
3
4 Eaunthor: me ¢———— |Current user
5
&

Figure 2.1.11 The new, empty script

Summary

¢ In this section, we have created a new Python project using the PyDev Project wizard (page 19);

o Eclipse requires a special source folder (page 21) for the Python scripts. (You cannot place them in the root
directory);

e You can use several predefined templates for Python scripts (page 22). However, for Blender API scripts |
use the <Empty> template;

e There are no special restrictions for the project names. In this example, | named this project “Boolean”
(page 20), because in the next chapters it will implement the Boolean command for Blender 2.8. For the
same reason | gave the newly created Python script file a name that follows the Blender convention for
add-ons: "object_boolean.py" (page 22).

Copyright Witold Jaworski, 2011-2019.

24 Preparations

2.2 Writing the simplest script

The script that | will write in this section will display the "Hello" text in the Python console. To see this result, we
need to add the panel with the Python console to our environment, because PyDev does not add it by default.
To do this, invoke the Window 2>Show View >Console command (Figure 2.2.1):

igate Search Project Pydev Run | Window | Help
QS i k| Newindow i pcces] | 9 | &[]
Editor 3 '
= O [P object_booleans &2 = B &= Outline &2 = O
Appearance 3 "
» v e Ll VomlE e 7
2 Created on 09| Show Yiew 4 é; Code Coverage |typefi|terte1¢
3 Perspective 3 |E Console Alt+Shift+Q, C
? |Ganthor: me o @) Errorlog Alt+Shift+0, L
th) 5 rrre Mavigation b=
on.Exe, & B= Outline Alt+Shift+Q, O
Preferences [2] Problems Alt+Shift+Q, X
R Profile (PyVmMoniter)
2 PyDev Package Explorer
i PyUnit
4" Search Alt+Shift+Q, S
= Tasks
Other... Alt+5hift+Q, Q

Figure 2.2.1 Adding the Console tab

This command adds an output console pane, which shows results of the script runs. Dynamic languages, like
Python, also offer something like "interactive console". It runs the Python interactive interpreter, allowing you to
check some expressions while writing the script. Let's add this gadget to the current perspective (Figure 2.2.2):

5 s 1. Click
€ p this menu

B Console 53 @*rﬁ": O

r 1 E 1 Mew Console View
|2. Select PyDev Console | \

Mo consoles to display at this time,

|e 2 PyDev Console |

Unable to create console for Jython (interpreter not configured)

() Console for currently active editor

(O} Python console |

3. Choose
Python console Unable to create console for IronPython (interpreter not configured)

() Jythen using VM running Eclipse console
PyDev Debug Console (Start the debugger and select the valid frame)

Configure interactive conscle preferences,
l.e.: send contents to console on creation,

connect to variables view, initial commands, etc.

Figure 2.2.2 Switching to the interactive Python console

Invoke the PyDev Console command from the pane menu, then select the Python console option in its dialog.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 25

So now you have the panel with the Python interpreter, where you can check your code snippets (Figure 2.2.3):

& Console 3 .I'_‘,HEGH-—%l:" 'ﬁ"nﬁ
PyDev Conscle [0] A

- import sys: print('%s %s' % (sys.executable or sys.platform, sys.wversion))
C:%“Program Files\Python37\python.exe 3.7.3 (v3.7.3:efd4eceedl2, Mar 25 2019, 22:22:05) [MSC w|1916 &4 bit

¥ You can enter here any Python This menu will allow you to switch

expression, to check how it works. between the output console and
the interactive Python console

Figure 2.2.3 Interactive Python console

One of the useful PyDev features is the code autocompletion. It works in the script editor window, and also in
the interactive console (Figure 2.2.4):

& Console i3 bﬂ'@|_§x|=‘ ~Cf>= 0
PyDev Console [1]

- Amport sys; print('%s %$s3' % (sys.executable or sys.platform, sys.wversion))
C:\Program Files\Python37\python.exe 3.7.3 (v3.7.3:ef4ec6edl2, Mar 25 2019, 22:22:05) [M5C w.1916 64 bit

> diry_ Start typing, then press
= "y

[' builfins tays'] :
- ay v
. D e e dictl) -» new empty dictionary
d:Ct ' »dict(mapping) -= new dictionary initialized from a mapping ohject's
o dir (key, value) pairs
@ divmod(y, y) dict(iterable]) -»> new dictionary initialized as if via:
[Edict - builtins fd =i} N
< & dict - multiprocessing.dummy.__init__ ord[k]\r:ln\: erable
[@dict! - test.test_pprint dict(*kwargs) -> new dictionary initialized with the name=value pairs
I @dicﬂ - test.test_pprint The list of the functions in the keyword argument list. For example: dict{one=1, two=2)
@dict_factor}r— zc!IiFEE.tE-_':t.fa-:tm which names !’T\GtCh the Enter: apply completion.
(L dict_from_cookiejar - pip._venc typed expression + Ctrl: replace current word (no Pop-up focus).
@dict_get_\rersion - _testcapi
@dict_getitem_knownhash - _testcapi Description (docstring)
(2 dict hassplittable - testcapi o of the selected function
Press Ctrl=Space for templates.

Figure 2.2.4 Example of the code autocompletion

Autocompletion usually takes effect when you type a dot after a name (for example, type "sys." in the console).
Such a behavior does not bother writing of the normal code.

Well, let's finish this talk. Eclipse is a very rich environment, so | cannot describe all its functions here. It's time
to write our simplest script (Figure 2.2.5):

[F] object_booleans 52 = B g= Outline i3I 12 = :n” @ ~ = 0
18 ros LT [type filter text
: A'E simplest script Lommmmmmm @ main
= 7
4= def main ():€-—-————-———-=-—-—- g
5 c = "Hesllo!'"
& print (c) Here you can see the first
7 element of the script logical
= main[]) structure: main() function
£ >

Figure 2.2.5 Our script — the first version, of course ©

Copyright Witold Jaworski, 2011-2019.

26 Preparations

To run this script for the first time, highlight its file in the PyDev Package Explorer, then select from the Run
dropdown the Run As=Python run command (Figure 2.2.6):

Hwi B /- H-|OHA-IPIENL ISR -F 0D

(no launch history)

[PyDev Package Explorer I

— 25 | -°.| Run As
1. Highlight Run Configurations... & ?—Py‘th;&lmit'test I:E

the script
Organize Favorites... I \
4B s1c o 2. Click this command
1| [F] ohject booleans.py

“def i :
b 2 Python 3.7 (64-bi ... thon3T\python.exe) ef main()

o = "H=]laolw

print(c)

-

|eF 1 Python Run |

Figure 2.2.6 Running a script (for the first time)

PyDev will switch the console into the output mode, and you will see there the result of our script: the ,Hello!”
text (Figure 2.2.7):

B Console i3 U”S&%E|-§‘Eﬁi|zrﬁ'= 8
A

<terminated> chject_booleans.py [C:\Program Files\Pythen3T\python.exe]
fello!

1

1

1
Results of
this script

Here you can switch back to
the interactive Python console

Figure 2.2.7 The results of this script: “Hello!” text.

When you run your script the first time, PyDev creates so-called Run Configuration in this project. You can find it
in the launch history of the Run and Debug dropdowns (Figure 2.2.8):

Hwig Bio A -0 - Qb0 E R

5?5?[5

A Run Configuration,
£ PyDev Package Explorer 532 |eP 1 Booleans object_booleans.py ﬁ created by the PyDev
== | % Run As L
J Boolean Run Configurations... P15
45 Booleans Organize Favorites...
& [src

rror

i:|[F] object_booleans.py

“def i H
5 € Python 3.7 (64-bi ... thon37\python.exe] =f main()

c = "Hello!"™

print (c)

Figure 2.2.8 The default run configuration

Note that this configuration (Boolean object _booleans.py) is the only item (or the first item, if you wish) in the
Run favorites list. To repeat this last run, you can just click the Run button (Figure 2.2.9):

File Edit|Click Run|Source Mavigate Search Project Pydev Run Window Help

FAQ Qi ¥ il F o

{8 PyDev Package Bxplorer 82 5 Run Run with external Python F = O
enles c] B -

iy

The simplest script

I

4 = Boolean
Figure 2.2.9 Launching the last run

In response, PyDev it will run your script again.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 27

To refine this initial run configuration for your project, from the Run dropdown invoke the Run Configurations...
command and find the definition of Boolean obect _booleans.py item (Figure 2.2.10):

Create, manage, and run configurations

From the Run menu invoke the
Run Configurations... command

Pl X B~ MName: | Booleans object_booleans.py
type filter text @ Main = ;&rgumentﬁrg Interpreteﬂ " Refresh
Ml Grunt Project
File Edit Refactoring Source MNavigate Skarch Project Pydev H Gulp Booleans
)))) .) HTTP Preview
AnRAEINEE=E- HE -1 R0 MRS (=R SRR 2" IronPython Run Main Module
(no laurkch history) @ IronPython unittest
{2 PyDev Package Explarer 3 24 @ hython run S{workspace_loc:Booleas/src/object_booleans.py}
B 5 | (i Run Asy L @ Jython unittest
412> Boolean | Run Cenfigurations... | @ Launch Group In the Python run Category n
4 [src T Nl Nodejs Application find this run configuration :&;ﬁdw'core—
b' ct b | 1 | 2 Dh
b = ~ = mTata Eﬂ P’_DE'_ Django) TProgram Hiles Python3 DLLs
<3 PyDev Google Apg Run C:\Program Files\Python37\lib
4@ Python Run C:\Program Files\Python37
|e" Bocoleans object_booleans.pyl CAProaram File<\Puthnn3Tulik\site-nackanes
& Python unittest <

Filter matched 14 of 16 items

)

Figure 2.2.10 Opening the Run Configuration definition for our script

| renamed this configuration as Run with external Python. Additionally, in the Common tab | enabled both of
the Display in the favorites menu options (Debug and Run: see Figure 2.2.11). (This setting “pins” this config-
uration into the favorites menu — just in case):

EREECRER | B3 Name:| Run with external Python |

type filter text @ Main (l’*l= Argtﬁqents (rg Interpreter (qg" Refresh (E Environmentl(ﬁ Commo-ﬁ\i_
i Grunt mae Rename this =
Gulp ® Local file configuration

& HTTP Preview
2" IrenPythen Run
& IronPython unittest
&7 Jython run
& Jython unittest
2 Launch Group
M Nodejs Application
[PyDev Django Mark this configuration
243 PyDev Google App Run as the project default

4 ep Pythen Run Standard Input and Output

H :
& Booleans object_booleans.p, Allocate console (necessary for input)
éj Pythen unittest

() Shared file: \Booleans Browse...

Display in faverites menu Encoding
(@) Default - inherited (Cp1250)
() Other 150-8359-1

[Input File:
Workspace... File Systermn... Variables...
[Output File: Apply these changes |—— v
< >
Revert Apply

Filter matched 14 of 16 items

Figure 2.2.11 Altering the Run Configuration of our script

You can also define your own run configuration manually — see details on page 134.

The run configurations names must be unique within the scope of the whole Eclipse workspace (in all its
projects). In this guide | changed the name of the Run Configuration for the clarity of the further text. For
the future projects you would better leave the run configurations their initial names.

Copyright Witold Jaworski, 2011-2019.

28 Preparations

Summary

e You can add to your PyDev projection a new pane with the Python console (page 24);

e The code autocompletion appears when you type a dot after an expression or press -. It also
displays the docstring for the function selected in the tooltip pane (see page 25);

e We have launched the simplest script and checked its result in the console (page 26);

e When you run your script for the first time, PyDev creates for this file so-called Run Configuration. You can
manage them in the Run2>Run Configurations dialog (page 27);

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 29

23 Debugging
To insert a breakpoint at appropriate script line, double-click () the grey bar at the left edge of the text editor

window. Alternatively, you can also open the context menu at this point (Figure 2.3.1):

[P object_booleans §2 = =

1. rre Click |:1z] on this light gray bar[[} object_boaleans 52 = B
> T4l simp1-s:|to Open the context menu 18 s =
3 P T 2 The simplest script
~ def main (): * A

4= def main ():

o = "HE';.;.O.I L]
print (c)

| Add Breakpoint | ”[II::> .
Dittble Breakpoint &

Breakpoint Properties...

New breakpoint

2 main()

Add Bookmark...
Add Task...
B ¥ Validate
NolFZT | Show Quick Diff Crl+Shift+Q
¥ | Show Line Numbers . |In this menu you can also

Breferences... set other text editor options

Figure 2.3.1 Adding a breakpoint

To open the context menu, click the at the line where you want to insert new breakpoint. Then invoke the

Add Breakpoint command. Eclipse will mark this code line with a green dot (Figure 2.3.1). You can remove this
breakpoint in a similar way.

e You add or remove breakpoints by double clicking the gray bar along the left text editor edge

To run the script in the debugger, click the bug icon (©) on the toolbar (Figure 2.3.2):

File Edit Refactoring Source Mavigate Search

Click here to start a debug session. At the
T E R D& + @ ~ = {beginning, PyDev will ask you about

11 PyDev Pockage Brplorer 5527 0|) object switching to the Debug perspective

e %)

= O 5= Outline i3
= type filter text
@y main

The simplest script

4 1= Boolean
& [src

& [F] object_booleans.py

[& Python 3.7 (64-bi ... then3 7\

I
1
1
T 1

1

“def main (): 1
c = "Hello!"' 1
print {c) *

[E T T S R

@*% This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to switch to this perspective now?

wber my decision

Select this option to
not confirm this
switching in the future

Figure 2.3.2 Launching a debug session

When you launch the debugger for the first time, Eclipse will display information about switching to the Debug
perspective. (On the first run, it will add this perspective to your project). This additional perspective contains
additional panes that are useful for debugging.

Copyright Witold Jaworski, 2011-2019.

30 Preparations

Figure 2.3.3 shows the screen layout of the Debug perspective, and the basic controls of the script execution
(and their hot keys). Note that the debugger has stopped at our breakpoint:

Resume || Terminate || Step Into || Step over f Step Return

_@ E Run Window Help
T F QST oo w4 o
@ M By b (] M BB RS F | Ouick Access

35 De.. 22 {5 Pr 4tk Se = B8 [F] object_booleans i3 —= ()= Vari... §3
The current line

- (to be executed) |:|

1

-
-
-

; | sow
Lol
4 ep Run with external Python [Python Run
a {72 ohject_booleans.py
4 o MainThread - pid_18756_id_574¢
= main [object_booleans.py:5]

= <module> [object_booleans.
o5 object_boeleans.py [debug] [C\Pre

Mame

© def mainp() : [» @ Globals Global variables

c = "Hesllo!"
printic)

Watch window
(view/edit script
variables)

SN B T T CR

o

maini()

Current Python

call stack Code execution

has stopped here.

& Console &3 | [*] Problems = 8

m-e X% 8 G &EREE e
chject_booleans.py [debug] [ChProgram Files\Python3T\python.exe]
pvdev debugger: starting (pid: 1875&)

Console: the standard output
of the running script

Figure 2.3.3 Screen layout of the Debug perspective

Green bar in the source code marks the line to be executed. When you press now the key (Step over) —

debugger will set the ¢ variable and move the execution “green bar” to the next line (Figure 2.2.4):

Mavigate Search Project Pydev Run Window Help

Y-Q-iw BB] m N @‘3@;‘@%_@;@ PN T R R = Quick.ﬂ\ccessg E?|%‘"r’
8

o - =

[P] object_booleans 5% = B =Vanables 3% @g Breakpoints €5 Expressions

= oEEE ~

The simplest script

2
— Marme Value
3 o This line has been executed :
4% def main (): /_ [@ Globals Global variables
A 5 * str: Hello!
® &

[53]

c = "Hello!"
print {c) \
main () This variable has appeared (or its

value has been changed)

E) Console £2 |[®] Problems E'&hﬁﬁlaﬁﬁnﬁlda'rﬁ':ﬁ
object_booleans.py [debug] [C\Program Files\Python3 7 python.exe]
Lj'—;dev debugger: starting (pid: 1875&)

Figure 2.3.4 The state after pressing the key (Step over)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 31

When you press the button again, the ¢ string is “printed”, and you leave the main() function (Figure 2.3.5):

File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help

M-l RDR® -0~ A-@® NP I ENE SRS O
45 Debug 22 [Project Bxplorer 4l Servers = 8 [F] object_booleans &3 = B x=Vanables i %
Sﬁ| R 18 rox E

The simplest script
rrur

4 ep <terminated>Run with external Python [Python Run]
4% <terminated> object_booleans.py

& <terminated, exit value: 0> object_booleans.py [debug] “def main (}:

S LIRSV O

2 c = "Hello!"
print(c)
2 main{) - -

The calling the main() function was the This line was executed —
last line of this script, so its execution so it printed the "Hello!” text
has been terminated in the console

&) Console 22 A% Problems ﬂ'@xsﬁ%ﬁhﬂgﬁﬁﬁ[

<terminated object_booleans.py [debug] [CAProgram Files'\Python37\python.exe]

pvdevpdebugger: starting (pid: '_E?Sﬁjl

Figure 2.3.5 The state just after leaving the function

Note that when the debug session is over, Eclipse has grayed out the execution controls visible on the toolbar
(Figure 2.3.6):

File Edit Refactoring Seurce-|Here you can re-launch a new debug session

R - N Al I [Quick Accesd] || g | & @ AR

=10

A De. B3 5Pr. i Se [] object booleans 3 = 0 =Vai. 32 % Ere2You can switch here
= 19 r e = to the PyDev per-
4@ <terminated>Run with external Pythot The simplest script spective

o <terminated> object_booleans.py o - .
& <terminated, exit value: 0> object_b “def main () : You can make minor corrections

c 41100 o your code here, and then re-

print]{c) launch the debug session

<1t b L RS

After termination of the
code execution, The
Python stack looks like
this

maini)

&l Console £2 |2 Problems = O

N-EX%OE BEREE -3
<terminated: object_booleans.py [debug] [ChProgram Files\Python3T\python.exe]
pyvdev debugger: starting (pid: 23356)

Hello!
\ The result of|

>3y the last run

>

| Writable | e | 6:13

Figure 2.3.6 Debug perspective (no code is running)

You can make minor corrections of your script in this Debug perspective (the text editor windows are the same
as in the basic PyDev perspective).

Copyright Witold Jaworski, 2011-2019.

32 Preparations

However, if you are going to make extensive changes — switch to the PyDev perspective. You have more help-
er tools there (Figure 2.3.7):

PyDev perspective
File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help
Y~ F=RF BE R R R R R R TR R Quick Access| || 5 | &[] 45
f PyDev Packag.. 2 = O [F] object_booleans i2 = B &= Outline i3 'k
BEsler v 1= = e e~
4 (=% Boolean type filter text

&[22 src
i [F] object_booleans.py

& @ Python 3.7 (64-bi ... thon3

The simplest script

rer
~“def main {(): @ main
o = "HE:.:.O.I L)
printmc}

2

=1 o N s L Rk

[5+]

main()

& Console i3 uvuxsﬂ%ﬁ|§gﬁﬁi|za'rﬁ'=‘ﬁ
<terminated> object_booleans.py [debug] [C\Program Files\Python37\python.exe]

pvdev debugger: starting (pid: 23356)

Hello!

Writable

Figure 2.3.7 Back to the PyDev perspective — for the further work on the code

While working on your script, you will be continuously switching between the Debug and PyDev perspectives.
That’s why it is worth to enlarge these toolbar buttons by displaying their labels (Figure 2.3.8):

Default settings | Buttons with labels |

5’ i.vtpz i Quick Access DI::> :1 |m7§$ Debug Quick Access
--;-;--" Outline &3 4w o) = =2 8

25 Qutline &2 J,a whlle =0 Al
type filter text type filter text
(%) main L main

Figure 2.3.8 Enlarged perspective switches

| did it by selecting in the context menus of these buttons (opened by - click) the Show Text option (see
page 133 for details).

Summary

e You have learned, how to set breakpoints in your code (page 29);

e We have launched our script in the debugger (page 29). On the first run, PyDev debugger creates a new
Debug project perspective;

e You have learned the basic debugger commands: Step Into (E), Step Over (), Resume () (page
30);

o We have looked at some helper debugger panes: Variables (page 30) and Stack (page 31);

e After termination of the script execution you can remain in the Debug perspective to make eventual correc-
tion to your code. Then you can just click the Debug button and debug it anew.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 33

Creating the Blender Add-On

This is the main part of the book. | am describing here the creation of a Blender add-on. We will start with a
typical script - a plain sequence of Blender commands that runs "from the beginning to the end" (Chapter 3).
Then we will adapt it for the required plugin interface (Chapter 4). In the result, we will obtain a ready to use
add-on that implements a new Blender command.

Copyright Witold Jaworski, 2011-2019.

34 Creating the Blender Add-On

Chapter 3. Basic Python Script

In this chapter, we will prepare a script that performs a Boolean operation on selected objects. | used this exam-
ple to show in practice all the details of developing Blender scripts in the Eclipse environment. You will also find
here some tips about the typical issues that may appear during this process. One of them is finding in the
Blender API the right class and operator that support the functionality you need! (I think that still nobody, except
the few Blender API developers, is familiar with the whole thing...).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 35

3.1 Problem formulation

There are three Boolean operations that you can apply to solids: difference, union and intersection. They are
often used in the mechanical or architectural modeling (Figure 3.1.1):

Intersection

Figure 3.1.1 Boolean operations on solids

| regularly use the difference of two solids in forming various machine parts. For example, it allows me to quickly
“drill” a hole in the basic shape. However, this “quickly” is not especially quick in Blender, because it implements
these operations as the Boolean modifier. Let me to show it on an example: let’s say that | want to drill a hole in
plate A using auxiliary “tool” object B (Figure 3.1.2):

" Object B: the “tool”
I want to “drill” a —
hole in object A)

Figure 3.1.2 The initial state: the “raw material” (A) and the “tool” (B)

| start by selecting object A and adding to its modifier stack a Boolean modifier:

=P W A (Machine Part]

1y | Add Maodifier

Generate sefarm Simulate

Figure 3.1.3 Adding a Boolean modifier to object A

Copyright Witold Jaworski, 2011-2019.

36 Creating the Blender Add-On

The modifier stack of a mechanical part in Blender usually contains various items. Each new one is appended at
the end of this list. In the next step | move the newly added Boolean modifier to the top position on the modifier
stack. (I am doing this, because | want to modify the original mesh of object A, instead of the more complex
shape with rounded edges, generated by the previously added Bevel modifier):

=+~ W & [Machine Part)

Add Modifier

Move it to the| Bzl
topmost position C ian: Object:

Copy

Figure 3.1.4 Moving the Boolean modifier to the topmost position on the object modifiers list
The Boolean madifier is set to the Difference operation by default, so | do not need to change this option. In the

next step | assign the “tool”: object B to this modifier (Figure 3.1.5):

& [Machine Part)
Add Madifier

¥y 2 Boolean

ap Threshold: 0.000001m

o Bevel B = [a v
 [Toal)

Figure 3.1.5 Assigning the “tool” object (B) to the Boolean modifier

Finally, | Apply this modifier to the object mesh (Figure 3.1.6), because | do not want to keep object B:

W, A [Machine Part)
Add Madifier

¥ T Boolean B = a v

0.000001m

7] Bewel

Figure 3.1.6 Applying the modifier results to the object mesh

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 37

In the result, the Boolean modifier disappeared, and the new faces that form this hole are added to the “edita-
ble” mesh of object A (Figure 3.1.7). Now | can move object B to next location, to create another hole:

Bevel B = 7 a v

Now | can use object B The Apply button removed the Boolean
for “drilling” another hole modifier and made its result “editable”

Figure 3.1.7 The final result of this Boolean operation

The Boolean modifier is a great tool when you need a “portable hole”: a feature which size, shape and location
you can alter many times during the project. It allows you to create complex shapes from basic elements of sim-
ple forms. (It is much easier to “unwrap” such simple meshes in the UV space for eventual texturing). However,
because of its “dynamic” nature, this modifier also has some drawbacks:

e You must keep the “tool” object in place (in a hidden collection?). While this is not a problem when you have
just a few of such items, it becomes an issue for the real Blender scenes with complex mechanical models. They
can contain several dozens of such auxiliary objects;

e You cannot edit properties of the edges or faces dynamically generated by a modifier. In particular, you
cannot assign these edges bevel weights, or flag as seams (which is useful for better unwrapping in the UV space);

That's why | usually apply Boolean modifiers just after they are completed (by clicking their Apply buttons). For
this purpose, | need the simple, “destructive” Boolean operations, as shown in Figure 3.1.8:

Select the object Selectthe operation
and the “tool”

' Unian

l Intersection

Figure 3.1.8 The “destructive” Boolean operation that | need

It would begin in the typical way: by selecting the tool object (or objects) and the single target object (the active
object). Then | would invoke the command (for example — using a keyboard shortcut) and from its pie menu
select one of the Boolean operations. After this, it would automatically execute all the steps described above,
producing a hole in the mesh of the target object.

Copyright Witold Jaworski, 2011-2019.

38 Creating the Blender Add-On

In the options of this Boolean command (not shown in in Figure 3.1.8), | should also be able to mark a checkbox
that preserves operation results as a modifier. This command should propose the last used options as the de-
faults when | would invoke it for the next time.

In this chapter we will write a Blender script that will use the Boolean modifier for implementing such a "destruc-
tive" version of this operation. Basically, it will repeat the sequence of steps described in this section. In the next
chapter, we will convert this script into a professional Blender add-on, which works like the command shown in
Figure 3.1.8.

Summary

e Boolean operations on solids are often used in mechanical and architectural models;

e Blender 2.8 lacks the “destructive” Boolean command!. There is only the “dynamic” Boolean modifier
(page 35, 36);

e You must keep the auxiliary “tool” objects used by the “dynamic” Boolean modifier. For Blender models of a
real-life complex mechanism that consists hundreds various parts, it becomes a serious burden;

e You can obtain the effect of a “destructive” Boolean command by applying the Boolean modifier (page 36,
37). However, this operation requires several steps. In this chapter we will prepare a Blender API script that
automatizes this task;

' Among the “community” add-ons installed with Blender you can find in the Object category a plugin named Bool Tools. This Python script
implements the Union, Difference, Intersection, and Slice commands. (Slice = Difference + Intersection). However, this command differs in
certain details from the command that | proposed in Figure 3.1.8. For example — it always deletes the “tool” object, and applies all the exist-
ing modifiers of the target object before applying the Boolean operation. (It leaves the Boolean maodifier at the end of the modifiers list). In
principle the tool proposed in this chapter is so simple that | decided to write it from scratch, instead modifying the code of the Bool Tools
add-on. What’s more, | need such a new, real Blender plugin as the example for this guide.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 39

3.2 Adapting Eclipse to Blender API

To write scripts for Blender in an easier way, we need to "teach" PyDev the Blender API. Its code autocomple-
tion should be able to suggest API objects, methods, and fields, just as it does for the standard Python modules.
Fortunately, PyDev has such a possibility. We just have to provide it a kind of simplified Python file that contains
only declarations of the API classes, their methods and properties. The very idea is similar to the header files
used in C/C++. To distinguish these "header files" from ordinary Python modules, we use the *pypredef exten-
sions in their names (a derivate from “Python predefinition”).

I modified Campbell Barton's script, which generated the Python APl documentation for Blender 2.5. Using it, |
was able to create the *.pypredef files for the entire Blender API. You can find them in the data that accompa-
nies this book. Just download the http://airplanes3d.net/downloads/pydev2/pydev-blender.zip file and unzip it —
for example into the folder that contains Blender binaries (Figure 3.2.1):

1+ [b’ pydev-blender.zip v | O Search pydev-... 0@
4 .
fmy SYSTEM (T | 2 Mame Type Compressed size
| iBTWU ! : :
Copy these files and folders i doc S
to your Blender directory > ||| pydev_debug.py P File 1KE

T TTTECT

! I Run.py PY File 1KB
. mnt |
I
- NVIDIA, In doc you will find Blender API header files and the
| F'erFLngis script for their generation (see section 6.1, page 139).
1 The two additional files:
: F'rngrar:n Files B e pydev_debug.py is an utility for debugging
| ?-zip'y Blender scripts in Eclipse;
e Run.py is a template for invoking your Blender
- Blender :I API script. (I will use it in the further sections of
i 2.80 |'|‘ Copy to Blender | this chapter)
. Blender-2.69

Figure 3.2.1 Unpacking additional files to the Blender folder

¢ In the folder that contains Blender executables (in Figure 3.2.2 this is Blender\ directory) place at least the
single file: pydev_debug.py. We will need it for debugging our scripts.

e You can place the Run.py file and doc\ folder in any directory you wish. However, in such a case in the
doc\refresh_python_api.bat batch file update the line that calls ..\blender (see page 141).

e If you follow the picture above and place the Run.py file and doc\ folder in the Blender directory, do not
forget to add the local Users group the create/write rights for Blender directory and its subdirectories.

(—:' - 1 V LC:"-\F'ngram Files\Blender | v & Search Blender 0O

I
, mnt :
. NVIDIA)
. PerfLogs

. Program Files ,
7

_ , In the main Blender directory place
2 /_ at least pydev_debug.py file
. Blender o) ~.-::runtim¢43'.clll

Remember to add the Users group the “write” right for Twpe "
this folder and its subdirectories (see page 140)

% swescale-3.dll

- v
| 280 Unzipped: folder Qf’ pydev_debug.py
| doc - - {and two files ---—»E{ Run.py
, Blender-2.69 w oL >

Figure 3.2.2 The files required to follow this book

Copyright Witold Jaworski, 2011-2019.

http://airplanes3d.net/downloads/pydev2/pydev-blender.zip

40

Creating the Blender Add-On

To use the *.pypredef files in a PyDev project, invoke the Project>Properties command (Figure 3.2.3):

File Edit Refactoring Scurce Mavigate 5Search | Project | Pydev Run Window Help
HnbdACiNEHER: HE- R F R =0 Open Project
. Close Project
[PyDev Packag.. 2 = O [F] object_boolea
4;:'. Bl o ICRAL oy | Build All Ctrl+B
4[5 Booleante | 1. Highlight the project Build Project
a5 src -) Build Working Set 3
i [F] object_booleans.py N def maiy Clean...
; i 5 c =
& €@ Pythen 3.7 (64-bi ... thon? - pri Build Automatically

2 main{)

Quick Access g” e PyDev | 45 Debug
— O EE Outline 2 = 8
lg laz = :”: Cd

| type filter text

iy main

Figure 3.2.3 Opening the project configuration window

Properties v

|2. Open its properties

It opens the project Properties window. In its left pane select the PyDev — PYTHONPATH section. It displays
several tabs on the right side of this window. Select from them the External Libraries tab (Figure 3.2.4):

| type filter text

| | PyDev-PYTHONPATH

|1. Selectrthis item |

Project Fagets

Project Mafures

Project References

PyDev - Inferpreter/Gramm

The final PYTHOMPATH used for a launch is co
defined here, joined with the paths define

y t

2. Click this tab

| [# Source Folders” & External Libraries " & String Substitution 1m"ariablesl

[PyDev - P

HONPATH |

Refactoring History
Run/Debug Settings

Server

|» Task Repository |

should be used if a

n external library changes.

External libraries (source folders/zips/jars/eggs) outside of the workspace.
When using variables, the final paths resolved must be filesystern absolute,

Changes in external libraries are not monitored, so, the 'Force restore internal info'

Figure 3.2.4 Navigating to the PyDev - PYTHONPATH:External Libraries pane

Add here (Add source folder) the full path to the doc\python api\pypredef directory (Figure 3.2.5):

| | Add source folder

The final PYTHOMNPATH used for a launch is composed of the paths
defined here, joined with the paths defined by the selected interpreter.

[# Source Folders | % External Libraries | @ String Substitution Variables

‘When using variables, the final paths resolved must be filesystem absolute,

Changes in external libraries are not monitored, so, the 'Force restor
should be used if an external library changes.

External libraries (source folders/zips/jars/eggs) outside of the workspace.

fiternal info

1. Use this button to add
to this list the path to
' doc\python api\pypredef

& Ci\Program Files\Blender\doc\python_api\pypredef

—
/

this button

2. Then click

Add source folder
Add zip/jar/egg

Add based on variable

ik

Remove

| Force restore internal inf0|

| Restore Defaults | | Apply

Figure 3.2.5 PyDev PYTHONPATH configuration

After every change made to PyDev PYTHONPATH make sure that you have clicked the Force restore internal
info button (Figure 3.2.5). In response, Eclipse will display information about the progress of this process in the
status bar (for a second or two).

Programming Add-Ons for Blender 2.8 — version 2.0

www.airplanes3d.net

Chapter 3 Basic Python Script 41

From this moment, when you add to your script appropriate import statement, PyDev will use the whole hierar-
chy of the Blender API in its autocompletion (Figure 3.2.6):

= eclipse-workspace - Boolean/src/object_booleans.py - Eclipse IDE = =
File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help
T @ Bi® 0~ % - ® 4 [add this import statement to| |Quick Access| | [|| PyDev | %5 Debug
irst!
[PyDevPackag.. 22 = O [F] “object_booleags 7% your code, first! O 5= Outline i3 =0
BE®le® v 1° = sl e -
P 2 The sifmplest script
4 [z Boolean Y B Then — as usual: when you type a dot,
4 g sre _ . PyDev opens autocompletion pane column 2
> 7] object_booleans.py S def main . —
Python 3.7 (64-bi ...then: _ ~ - maim O oo
> €@ Python 3.7 (64-bi o cube = bpy.data. : G main
O 7 BERRELS). O metaball
5 main () & movieclips
& node_groups
& objects
& paint_curves
& palettes
B Console 52 @ particles

Mo consoles to display at this time.

Figure 3.2.6 Code autocompletion in a Blender API statement

@ path_from_id{property)

@ path_resclve(path, coerce)

@ pop(key, default)

() property_overridable_static_set(property)

) property unset(property) W
Press Cirl=Space for templates,

The list of the class members appears when you type a dot. What's more, when you hold the mouse cursor for a
while over a method or an object name — PyDev will display its description in a tooltip (Figure 3.2.7):

File Edit Refactoring Source MNavigate Search Project Pydev Run

ORI @ -0~ Q-0 /-~ F e~

Window Help
Quick Access|

% |[@Pyer] 4 Debus

= O Z= Outline &3 = 8

When you hover mouse cursor| o=@ ~
over a method or a field — PyDev
displays its description

| iy main

cube = bpy.data.objects| "Cuba"] +

types.BlendDataObjects Found at: bpy

objects = types.BlendDataObjects # (read only)
Press 'F2' far focus

[PyDev Packag.. 22 = B [F] "object_booleans
swles - =
42 Boolean 2 The simplest script
PRE R = |
> [F] object_booleans.py ?_ J.l‘f.}_::DIt._bpy
@ Python 3.7 (64-bi .. thon: def main () :
i print (cube.name)
S maini)
inport bpy

Edef main

()

N
print (cube.name)

cube = bpy.data.nbjects]:["Cube"]

4= bpy

i main

types.BlendDataObjects Found at: bpy

In these tooltips you can also find a link to the source of dis-
played declaration. Click it to open this source file in a new edi-
tor window. In this way you can read docstrings of the API fields

objgtts = types.BlendDataObjects # (read only)
L/

Press 'F2' for focus

Figure 3.2.7 Displaying descriptions of Blender API objects

When you move the mouse outside, the tooltip with the method description disappears. You can also click the
reference link, placed in the first line of the tooltip text (see Figure 3.2.7). This link opens the source file in the

line that contains declaration of this item (Figure 3.2.8):

Copyright Witold Jaworski, 2011-2019.

42 Creating the Blender Add-On

[F] bpy &2

‘@returns: BlendDatzaNods

[F] “object_booleans

P I | S
wollection

g bbjects

rrrghject

types.BlendDatalCbhjects
data-blocks

(@returns: BlendDataObjects Collection of Object
rrr

In the source file, you can find additional de-
scriptions for the API variables and class fields.
(PyDev does not display them in the tooltip)

paint curves

"' rPaint Curve -block
B

41}
a3
[Hi]

~ =
s dat loc
DataPai

£,

=

T
=1 —r

— 77 S o =
urves Collection of Pa

S LIL

31}
51}
k

L

‘Ereturns:

>

Figure 3.2.8 Property declaration in the predefinition file (bpy.pypredef), opened using the tooltip reference link

From the PyDev point of view, such a declaration is in the predefinition file (bpy.pypredef). That's why it is
opened as the source code.

You can also locate the selected field or function in the Outline pane (Figure 3.2.9):

ins [F] bpy %2 = B g= Outline i3 = O
: Ca £ Wad In the Outline window you can quickly
M t . L AWoAd
o F2 251, Place the caret at objects, and when PyDev|“~ *~ find the class of the selected element
/ highlights it — open the context menu (-) (in this case: BlendData)
v
objects = types.BlendDatalCbjects l 4 BlendData 2
PP Ighjems dasa mlen oF actions
Eret Undo Ctrl+Z =0 F armatures
T Revert File &F brushes
Save Chrl+S ¢F cache files
paint_c _ E F cameras
'TrPain Show In Alt+Shift+W » | Z= Outline —
‘Eret i = | :
P Cut |2. Invoke Show In->Outline | - Navigator
o Chrle 2 PyDev Package Explorer
¥ - _
PAletLe o Copy Context Qualified Name &7 Terminal ils
rrr D— 7 % p]'r
:’;;;; [F | Paste Ctrl+V SR .Exp orer
L] Properties
Quick Fix Ctrl+1 OrIsSIvED
particl Shift Right l oF lattices
‘1 iPart Shift Left F libraries
- - oF lightprobes
‘Eret 5r ghtp
e Preferences... ¢F lights
<F linestyles
¥\t Togglef tab: oty
seenss oggle force tabs F masks
"1 1Scen Display Ctrl+Shift+D F materials
Eret| muy = In the Outline window
e S i PyDev finds highlighted
e g element (here: objects)
SCreens L g S = e et b bl i e = d: MO E_gr._:.upg
"1 1Sereen data-blocks "

BlandANNastasCrraanec Al

TarmrtTam

P

Figure 3.2.9 Finding the selected class member in the Outline panel

Programming Add-Ons for Blender 2.8 — version 2.0

Crvrao

>

-r

www.airplanes3d.net

Chapter 3 Basic Python Script 43

Note that the Outline pane is a useful “training aid”. You can use it for an interactive “walk around” the whole
Blender Python API. Let’s collapse the tree of the basic bpy module to its root nodes (Figure 3.2.10):

Quick Access @l 2 PyDev i;‘ts:Dehug
ect_booleans [Pl bpy &3 = 0 g= Outline 3 ~ laz:n: = = B8 E

odule type filter text T =)

& context

bpy.data is a field of the bpy| _ _ |—|° Aot
module, providing an instance > =

of the BlendData class ’ ops
conteyt = types.Context ’t.'r’F'ES'

[V S

Click here, to collapse
the bpy structure

=

@ oLn

9 = types.BlendData

12 class ops=:

3 "' r'Spcecial class, creaste

Figure 3.2.10 The root structure of the Blender API

Here you can see the basic API elements:

bpy.data provides access to the data of the current Blender file. Each of its fields is a collection of
objects of the same type (scenes, objects, meshes, etc. — see Figure 3.2.9);

bpy.context provides access to the current Blender state: the active object, scene, current selection;

bpy.ops contains all Blender commands (operators). (In the Python API, each Blender command
is implemented as a single method of this class);

bpy.types contains definitions of all classes that are used in the bpy.data, bpy.context and
bpy.ops structures;

When you look inside bpy.types, you will see an alphabetical list of all classes used in the API. An exception
from this rule is the bpy_struct structure, located on the first place. This is the base class of all other API clas-
ses. Its methods and properties are always available in each Blender object (Figure 3.2.11):

Quick Access =1 |7'§,is: Debug

[F] *object_booleans [F] bpy =2 = O 5= Outline i3 = B 5’

= laz :E': :D: = E
class : type filter et

rrrpuilt-in béﬁss for all classses in
- - A
All Blender classes inherit “ types

Nots that bov. bvpgmethods and fields from bpy_struct
o the bpy_struct class Action
ActionConstraint
def as pointer(): ActionFCurves
"' 'Returns the memory address which ho. ActionGroup
ActionGroups
Breturns (int): int (memory address, ActiunPnseMarker!
Note: This is intended only for adwe , AddSequence
- [[&) Addon
, AddonPreferences

» Addons
» AdjustmentSequer

return int

Figure 3.2.11 bpy_struct: the base class of all Blender API classes

Copyright Witold Jaworski, 2011-2019.

44 Creating the Blender Add-On

Note that bpy_struct methods may be not fully implemented in the derived classes. For example — bpy_struct
has the items() method. It is implemented only by the API collections (for example — MeshEdges, the collec-

tion of MeshEdge objects) together with additional methods, like add() (Figure 3.2.12):

[F] *object_booleans

[l bpy
class MeshEdges (types.bpy struct):

I el Jamrtian mE meok adooo

~ 7 __|All the standard collection methods of
this class are derived from bpy_struct.

[|

/_ This definition contains only the class-

def M (count|specific methods, like addy().

pass

class MeshFaceMap (types.bpy struct):

|

o= Qutline 53 = 8
LA |
= l&z :Ei o =
type filter text
. @ MaterialSlot A

@ Menu
>@ Mesh

. [[& MeshCacheMedifie
- [[& MeshDeformModifi
; @ MeshEdge
Fi @ MeshEdges
i add
4 @ MestheMap
<F value
» @ MeshFaceMapLayer
» @ MeshFaceMaplayer

o An example of a field declared in the 4 [MeshLoop
/_ predefinition file. oF bitangent
Its type is assigned as its value (this is oF bit f
value = int the autocompletion requirement) ttangent_sign
. oF edge_index
Greturns: int in [-inf, inf] o index
P < normal

Figure 3.2.12 Derived Blender API classes — declarations of their methods and properties

Of course, all the classes that represent single API elements (like MeshEdge) have their items() methods emp-
ty (as well as many other bpy_struct methods and properties).

The inheritance of the items() method in every Blender API collection class obscures the results of automatic
code completion. PyDev reads from the base class definitions that each of them contains just bpy_structs.
Fortunately, it is possible to “suggest” PyDev the appropriate type of a variable. Just put earlier in the code a line
that assigns to this variable the appropriate type (Figure 3.2.13):

[P] bpy = O

]

[F] *object_booleans 33

This auxiliary line forces PyDev to
assume that cube is an instance of
I bpy.types.Object class.

import bpy
i)
& ’cube = bpy.types.0bject

cube = bpy.data.objects["Cub="]
print (cube. 'J.tl /

£ mame ﬁ

“def main

Thanks to this declaration, you can see the
Object members in the autocompletion list

def new(name, chject_data):
"'Add a new cbject to the main dat:
Arguments:
@name (str): Mew name for the dati
(never Nonel

main
g O name_full

@ new(name, chject_data)

[S R,

—_——t— il I

Figure 3.2.13 “Variable declaration” — a workaround of the Blender API collection type problem

In practice, you should add such "declaration line" only for a moment, when you need to use the automatic code
completion. Always place it above the line where this variable receives its first "real" value. In this way, your
script will work correctly even if you forget to comment out this "declaration”.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 45

Anyway - PyDev detects such lines, identifying them as "unused variables". It marks them with appropriate
warning (Figure 3.2.14):

[F] *object_booleans &3 D! = B = Outline i3 = O
The simplest script L
P - - I:| J'az :E: ¢ = -
import bpy type filter text
“def main {): 4— bpy
& cube = bpy.types.0bject @ main
cube bpy.data.objects["Cuba"]

print (oygbe .name)

main|)
Before running your script,

El Console] Tasks |.'_ Problems 57 clear its Problems list! }:3 = - = H
T
0 errors, 1 warning, 0 others :

Descripticn . Rescurce : Path Location Type
4 & Warnings (1 item) ;
Y Unused vanable: cube object_bocoleans.py /Boclean/src line 5 PyDev Problem

Figure 3.2.14 PyDev warnings for each “type declaration” line

It is a good practice to look into the Problems tab from time to time. You will see there all the lines you have
forgotten to comment out. Using this list, you can quickly fix these issues.

So far, we have discussed only the bpy.types branch. What about Blender operators (bpy.ops)? There are
plenty of them! They are grouped into modules (classes): action, anim, armature, ... and so on. Let’s expand
the bpy.ops.brush module (Figure 3.2.15):

E E‘l “object_booleans @ bpy 2 = O EE QOutline &2 = 8
2 pass R
type filter text
def add gpencil():
"1 144 brush Ffor Sx{Groups of Blender operators (they 1@ ops 2
A are defined as Python classes) x . @ acticn
>@ anim
pass >@ armature
- [® boid
def [Eae O (shape="SMOOTH') : < a[[®) brush
rrrget hrush shape Each operator is i add
Arguments: a class method @ add_gpencil
@shape (str): in ["SHARP', 'SMOOTH', " »li} curve_preset
(L) reset
o i) scale_size
i) stencil_control
pass

) stencil_fit_imag
() stencil_reset_tra

Roatmrn hwieh o Aafanltreoe haoasd Aan e }@bUttDns b
£ > £ >

def re=set():

Figure 3.2.15 Operator declaration example

Each operator module (bpy.ops.brush, for example) is declared as a separate class that contains many meth-
ods. Each of these methods is a Blender operator. Note that every operator can be invoked without any parame-
ters — because each of its arguments is named and optional (i.e. has a default value).

Copyright Witold Jaworski, 2011-2019.

46 Creating the Blender Add-On

Because of the PyDev uitilities like code autocompletion or the Outliner pane, this section has become an intro-
duction to the Blender API architecture. Continuing the topic started on page 43, | have enumerated below the
remaining APl modules. They are much smaller than the main modules (bpy.data, bpy.context, bpy.types,
bpy.ops):

bpy.app various information about current Blender instance: version number, the path to the ex-
ecutable file, compiler flags, etc.;
bpy.path helper methods for working with paths and files (this functionality is similar to the

os.path standard module);

bpy.props functions for creating new class properties, which Blender can display as the controls in
the panels (when they are needed). To distinguish them from the ordinary class proper-
ties (fields), they are called "Blender custom properties" or just "custom properties". We
will use them in the next chapter, in the operator class;

bpy.utils registration of Blender add-ons, importing Python modules, invoking other programs.
Provides utilities for handling the path strings. Contains two additional submodules:
units and previews;

bpy_extras further auxiliary functions and classes. They are grouped into eight submodules:
anim_utils, object_utils, io_utils, image_utils, keyconfig_utils, mesh_utils,
node_utils, view3d_utils.

Apart the basic bpy section, Blender API offers additional modules:

mathutils classes representing some geometric and algebraic objects: Matrix (4x4), Euler,
Quaternion (rotation), Vector, Color. Contains also the geometry submodule with a
few helper functions (line intersection, ray and surface intersection, etc.);

freestyle six submodules (types, predicates, functions, chainingiterators, shaders, utils) for
handling the auxiliary “sketching” (NPR) Freestyle renderer;

bgl functions that allow scripts to draw directly in the Blender windows. (In fact, it contains
most of the OpenGL 1.0 methods. Preserved for the backward compatibility);

gpu another, more modern (and preferred) API for drawing directly in the Blender windows.
Contains four submodules: types, shader, matrix, and select,

bmesh another API for mesh handling (precisely: boundary meshes). Contains four submod-

ules: ops, types, geometry and select;

| know little about the three remaining modules: aud (Audio), blIf (Font Drawing), and idprop.types (ID Property
Access), so they are not described in the list above.

Summary

e The Python predefinition files (*.pypredef) allow PyDev to display Blender APl code autocompletion. The
predefinition files for all Blender APl modules are included in the data accompanying this book (page 39);

e After unzipping the folder that contains the *pypredef files (doc\), add its path to the PyDev project
PYTHONPATH (page 40);

e To enable the Blender API autocompletion in your script, add the “import bpy” statement in the first lines of
its code (page 41);

e You can use PyDev tooltips that display function descriptions and the Outliner pane for further exploration
of the Blender API structure (page 41,42);

e The reference link in the tooltip window allows you to open the source *pypredef file in the text editor. It
can be useful for examining the descriptions of a Blender API class fields, which PyDev does not show in
the tooltip pane (page 44).

e In case of the elements from a Blender API collection, use "variable declarations" (page 44) to obtain the
correct code autocompletion;

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 47

3.3 Developing the core code

In most of the programming guides, you would immediately see the script code in the section like this one. Their
authors often present the ready solutions as if they were “pulling a rabbit from the hat", adding just some com-
ments. This guide takes a different approach. | would like to show you here what happens before you write the
first script line: the searching for the solution. This stage is even more important than the “pure” coding.

First prepare the test environment. For this purpose, in the initial Blender scene | transformed the default Cube
object into a thick plate. To give it a more “mechanical’ look, | rounded its edges using the Bevel modifier. Then
| added to this scene a Cylinder object. | am going to use it as the “tool” in the Boolean operation, thus |
switched its representation to Wireframe mode. | will conduct these tests in the standard Scripting workspace
(Figure 3.3.1):

Scripting

S
w Text Templates B~ + new [open

Outliner (1)

7 o
A% A Ko
@

9
v A Blendfile Data

[Outliner (2)

Text Editor

/End

" Pyton Cosole

C = bpy.context, D = bpy.data

Operations Log

(™ call Menu
Figure 3.3.1 Screen layout for the “test environment”

Save this Blender file to the disk, and then import it to the PyDev project (using the Import.. command — see
details on page 145), so it will be “available on a single click” (Figure 3.3.2):

File Edit Refactoring Scurce Mavigate Search Project Pydev Run Window |
ﬁv EQ#&TGT%TE;)T_T v“f:j{::lv

[PyDev Package Explorer 3 = O [F] object_booleans 52
-

= <}='=l>| R
41— Boolean
PRE
. [F] object_booleans.py

§ - This Blender file contains
4 (2 blender file 7' the “test environment” L [} :

inport bpy

| 4% boolean.blend:

. & Python 3.7 (64-bi ... thon3T\pythor

cube = bpy.data.objects

Figure 3.3.2 The test Blender file, added to the Eclipse project

Copyright Witold Jaworski, 2011-2019.

48 Creating the Blender Add-On

The goal of this section is to prepare a code that automatically executes the steps described in section 3.1
(Figure 3.1.3 - Figure 3.1.6). When you invoke a Blender command, its equivalent Python API expression ap-
pears in the Operations Log window (see Figure 3.3.1, page 47). This is the best place to learn what you should
put into your code. Let’s begin by adding a Boolean modifier to the active object (Figure 3.3.3):

[
M, Cube

Add Madifier

Operations Log

When you add a Boolean modifier to
object Cube, Blender displays such a
line in the Operations Log window:

bpy. ops.object.modifier_add(type='BOOLEAN']

Figure 3.3.3 Adding a Boolean modifier (to the active object)

Similarly, after the next step — moving the Boolean modifier to the top of the modifiers list — a new line appears
in the Operations Log window (Figure 3.3.4):

Operations Log

When you move up the Boolean modifier lap Threshaold:
on the modifier list, you will see this new
line in the log window:

5.0bject.modifier add{type="'BOOLEAN']
object . modifier_move_up(modifier="Boolean

n
J

Figure 3.3.4 Moving the Boolean modifier upward on the modifier list

In the third step | assigned object Cylinder to the Boolean modifier, pointing it directly on the screen (using the
“pipette” tool — (Figure 3.3.5):

=+ | cube
Add Modifier
| clicked
Cylinder
the “pipette” tool

v 2N EBoolean
Apply
Operation:
nce

ap Threshald:

=] Bevel

Figure 3.3.5 Assigning Cylinder as the Boolean modifier “tool” object (using the mouse)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 49

This did not cause Blender to add any new log line. However, when | manually typed the object name in the
Object field, Operations Log displayed corresponding expression (Figure 3.3.6):

E: g :.: Cube Propen‘les

* " £dd Modifier

Operations Log a4 T 2 Boolean

Apply

bpy . o ject.modifier add{type='BOOLEAM')
bpy.ops.object.modifier m up{modifier="Boolean"}
bpy.context.object . modifiers["Boolean"].object = bpy.data.objects["Cylinder”]

Figure 3.3.6 Assigning Cylinder as the modifier “tool” object (by typing the object name)

While the API code in the previous lines contains procedure calls, this one is an assignment. Let’s look at it to
learn what is happening here. The bpy.context object provides information about the “execution context” of
your code: which objects are selected, the window where the user invoked your script, etc. The
bpy.context.object property returns the active object (the last scene object that you have clicked). In this line
Blender uses the modifier named Boolean (modifiers['Boolean"]). It assigns to the object field of this modifier
(this is the “tool”) a reference to another scene object named Cylinder (bpy.data.objects["Cylinder"]).

Note how Blender refers to (scene) object Cylinder. In the log line it is represented by an element of the list
named bpy.data.objects. The scene object name (you can type/edit it in Blender Properties panel) is the index
(or “key”) of this list. In fact, in Blender API this is the preferred method of referencing all types of the scene dat-
ablocks. Module bpy.data provides your scripts contents of the current Blender file as lists (precisely: iterators).
Its objects list contains objects from all scenes defined in this file. The names of these objects are unique, so
they are used as the convenient keys. (When you try to type in the Name field of a scene object an identifier that
is already used by another object, Blender automatically corrects it. It adds a numerical suffix to this name).

e All Blender data (datablock) types have their lists in module bpy.data: meshes[], materials[], textures]],
scene object collections (collections[]), etc. You can “pick” (i.e. refer) to any element from these lists using
the datablock name as the list key.

The last step in the executing sequence is clicking the Apply button of the Boolean modifier (Figure 3.3.7)

W Cube Properties

Add Modifier

When you click the Apply button, .8 v Of | Boclean O = a
in the log you will see this line:

Copy

. - - - -
Operatlons LOg = Owerlap Threshold: 0.000001m

] Bevel

| .object = bpy.data.objects["Cylinder"]
DATA', modifier="Boolean"}

Figure 3.3.7 “Applying” the Boolean modifier to the object mesh

Copyright Witold Jaworski, 2011-2019.

50 Creating the Blender Add-On

As you can see, Blender wrote the basic code of the script in the Operations Log window. Now you can copy
this text to the clipboard: just select it with the mouse and press [ctri}{c] (Figure 3.3.8):

1. Use mouse to
select the code

object.modifier_
,||t|'iFlf_‘t mllljif nole =1 |:::],l'-|_ir'lle!r"']

Selected lines are
highlighted in blue
s object . modifier add(type='BOOLEAN')
bject . modifier_ IJ|ZIII11IIIZ|11'1F'F—" molean")

.object = hpu data.objec
DATA', modifier="Bog

Figure 3.3.8 Copying Blender log lines to the clipboard

Then you can paste this code to Eclipse text editor (Figure 3.3.9):

[F] *object_booleans 52 [F] bpy

he simplest script
rr

Do not forget to place this import The code, copied from the

import bpy statement at the beginning / Blender oberations log
')

gl::up},r.r:nps Dl‘j]ECt mcu:ilfler _move_up I:I[lDdlflEI="q:l:u.=-—""
bpy.context.object .modifiers["Bool=an"] .object = hpy.data.nhjects[":’ylinder"]i

FyAMmA T

bpy.ops.object.modifier apply(apply as='DATA', modifier="EBcoolsan") !

,,

Figure 3.3.9 The simplest API script: lines copied from Blender Operations Log

This is the first approximation of the code we need. Do not forget to add above the “import bpy” statement. Oth-
erwise Eclipse will mark errors in all these lines (Figure 3.3.10):

[F] *object_booleans 52 [F] bpy

The simplest script
rror

e, —— |If you forget to add this line
E v, — Eclipse will display errors

bpy.ops. D];ﬁject modifier add(cype='EBEOCOLEAN")

Dpﬁ D]::I]ECE modifier move up(modifier="Boolean™

Ng\g z:r:nntext object.modifiers["Socl=szan"] .object = bpy.data. objects["Cvlind=r'"]
g‘g:gups cbject.modifier apply(apply as='DATA', modifier="EBooclzan™)

QOO0
?E

Undefined variable: bpy

Figure 3.3.10 Effects of the missing bpy module import statement

They would also occur in Blender. Always keep your script in Eclipse free of any error.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 51

The script from Figure 3.3.9 works only for the specific data which | prepared in the test *.blend file. Before we
run it for the first time, let's change the structure of this code. In this way | am preparing this script for further
modifications (Figure 3.3.11):

[F] “object_booleans 22 | [F] bpy =

| put the original log lines

import bpy / into a procedure / | write comments for
each field, method,

and function

| pass the “tool”

bpy.ops.object.modifier add (type='BOCLEAN'") object as the
bpy.ops.object.modifier move up (modifier="Boolsan"” parameter

bpv.contexXxt.object . modifiers["EBoolean™] .object = [Cool
| bpy.ops.object.modifier apply(apply as='DATA', modifier="Boolsan")
K_|Calling the procedure
bnnlean_nperatinn){l:py. data.ockjects["Cvlind=r"]) «——/|In this call, | am passing
print {"bool operation: Done!" the Cylinder object as
the tool parameter
_ |Temporary diagnostic line

Figure 3.3.11 The same code, organized into more “professional” structure

| placed the original code into a procedure named boolean_operation(). In this way the main script will be
shorter and more readable. In the future, this plugin will use user-selected objects as the “tools” for a Boolean
operation. That’'s why this procedure has a single argument: the tool object. Inside boolean_operation() | as-
sign it to the modifier. For the first test, in the second-last line of this script | simply call this procedure, passing
object Cylinder as the tool parameter.

In the last line | placed the print() command. It displays the text in the console. Sometimes such a statement
can be useful: it allows you to quickly determine if the script execution has been successfully completed. In the
next section the presence of this line will allow me to show how the debugger leaves the procedure call (unlike
as in the case on page 31)

By the way: as you can see at the beginning of the procedure, | already added there a few comment lines that describe
shortly: what it does and what arguments it expects. This is my “good practice”. Despite appearances | do it for myself. Writ-
ing such a comment forces me to re-think if this procedure is necessary, and if its arguments match its task. Because Python
is a language with ‘“flexible types”, | always specify in such a description what argument type/types it expects and other as-
sumptions. These comments allow me to write a cleaner code. (From my experience, 50% of runtime errors in the scripts is
caused by passing a wrong parameter to a function or method. You can avoid most of them if you read the func-
tion/procedure descriptions that PyDev displays in the tooltip window). | also have no illusions about my memory: | will re-
member nothing when | return to this script after a year or two. It is always frustrating to learn the same things anew. In this
case my comments help me in quick recalling the nuances of such a “forgotten” code. | started commenting my programs
during my student years, and since that time this habit saved me many troubles.

Copyright Witold Jaworski, 2011-2019.

52 Creating the Blender Add-On

Summary

e | prepared in Blender a test environment for the script: the file named booleans.blend. It contains two ob-
jects — Cube and Cylinder. For the script development in Blender we will use the standard Scripting work-
space (page 47);

e ltis convenient to place the test Blender file in a folder of your Eclipse project (page 47);

e In the Operations Log window, you can see the Python API code for the Blender commands that you are
invoking (page 48);

e Operations Log does not display the API code when you pick an object using mouse. However, it displays a
Python statement when you do the same by typing the object name in the corresponding field (pages 48,
49);

e The code from Operations Log can be an excellent information source. In the simple cases, like this one,
the key lines of the script are “written by Blender” itself. All what you have to do is to copy them to clipboard
and paste into Eclipse (page 50);

e The Blender API predefinition files (the bpy module and the others) allow PyDev IDE to highlight various
errors and warnings in your code (page 50). Fix all these issues before running your script in Blender;

e The basic information sources for your script are two objects:

- bpy.data, which provides all the data from the current Blender file;
- bpy.context, which provides information about script “environment”, for example - selected objects;

e The preferred way to access the Blender file data are the bpy.data lists. They use datablock names as

their keys (indices) (page 49);

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 53

34 Launching and debugging Blender scripts

In the previous section we have written the first piece of the script that should work in Blender. You could launch
it by loading this file into the Blender Text Editor and invoking the Run Script command. However, it would be
difficult to debug your script this way. What's more, it brings some confusion about the source files. (If you
changed something in the Blender Text Editor, you would have to remember to save it back to the disk).

| suggest another, more convenient solution. Open in the Blender Text Editor the Run.py file that accompanies
this book (see page 39) (Figure 3.4.1):

- Blender* [C:\Users\me\eclipse-workspace\Boolean\blender_file\boolean.blend] - O

A File Edit Render Modeling Sculpting UY Editing Texture Paint Shading Anin

Edit Format Templ

IFI'}-' . |:I ra
blf, mat

import *; from m

= hpy.context, D = bpy. data

» /] Be BIEE} aw

e2yData\Run. py

E] Fan Wiew g Collection | Cube |

Figure 3.4.1 Adding the Run.py script to our Blender test file

Run.py is a “stub” script, containing just a few code lines. To adapt it for your project, update values of its
SCRIPT and PYDEV_PATH constants (Figure 3.4.2):

B~ wiew Text Edit Format Templates B/~ Runpy T =
1 Full path to vyour

2 SCRIFT Users/me/eclipse-workspace /Boolear c/object booleans.py" script (see page 151)

5 PYDEWVD PATH='C sers/mes. p2/pool/plugin rq.python. pydey.core 7.2.1, 201804251

pydey_debug pydey

8 pydev.debug(SCRIFT, FYDEVD PATH. trace = True
When you switch trace to False f\s PYDEV_PATH enter the full path to
— the script will not be debugged /pysrc folder (see page 152)

Figure 3.4.2 Adaptation of the Run.py code to this project

The SCRIPT constant should contain the full path to your script file (for details how to find it — see page 151).

The PYDEV_PATH is the full path to a certain PyDev subdirectory, named pysrc. In this folder you can find the
pydevd.py module, which contains so-called remote debugger client (see pages 149 and 160 for more infor-
mation). Actually (in 2019) you can find the main PyDev directory in the current user profile (C:/Users/me/ in
Figure 3.4.2), in the .p2/pool/plugins subdirectory. However, in the future PyDev versions this location can
change, so in case of troubles see page 152, where | suggest how you can find it.

Copyright Witold Jaworski, 2011-2019.

54 Creating the Blender Add-On

Make sure that the test scene is also ready for the run. At this moment the first version of our code assumes that
the active object is Cube. That’s why it is selected (Figure 3.4.3):

Selected
object
"-.\

Figure 3.4.3 Preparation of the test environment — | selected object Cube (now this is the active object in this scene)

Insert a breakpoint in your script where you want to start debugging. In this case, | set it at the first statement
(Figure 3.4.4):

chject_booleans 53 = B
[E] obj

S rrr

Boolean

r T

If you set no breakpoints, the debugger will run this
script from the beginning to the end, without any stop
& Tdimport bpy

= def boolean operation (tool):
=] r"rPeyrforms & Boolean operation on the active obhject

Arguments:
Figure 3.4.4 Setting the breakpoint

Launch from Eclipse (Debug perspective) the remote debugger server (details — see page 149) (Figure 3.4.5):

File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help

H-HRPioe MBo f-if-F-Ce-Dik-0

- De.. 52 5 Pr. 4iSe = [F] object_booleans 53

= rrr

x| =
a ,ﬁ‘ Debug Server [Python Server)
ha Debug Server

Boolean operator (ver. 0.01)
rrr

Run the remote
A import debug server

1
The server starts listening on TCP < :
port 5678 :

)
(It may happen that your firewall will E Console &2 |-r-- Pl:oblems
ask you for the permission to open the 1
TCP/IP communication via this port) Debug Server v
, Debug Server at port: 5678

Figure 3.4.5 Launching the debug server process

For further details about this step — see page 153. If you cannot find this button on your toolbar — see pages
149, 150.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 55

When the debug server displays its “listening” message in the console, you can run the Blender script. Click the
Run Script button, located in the Run.py window header (Figure 3.4.6):

Scripting

E “iew Text Edit Format Templates E Run. py |'_.D I ; E Reqgister Fun Script

IFT

Run this script

4
3 FYDEVD _PATH

5

7 pydev_debug pydesw

.':’i pydev.debug (SCRIPT, PYDEWD PATH, trace

Figure 3.4.6 Launching the Blender script for the PyDev debugger

This code loads the current version of your file (from the path specified in the SCRIPT constant) into the debug-
ger. From this moment Blender window “freezes” until you finish this debug session. It is not being updated and
does not react to the mouse clicks. The mouse cursor in Blender window shows the “wait” icon.

Now click the Eclipse window. After a few seconds the debugger pane "comes to life", and the debugger stops
at the first breakpoint (see page 54) (Figure 3.4.7):

= 4 - [k m M DR “@? 1 | = PyDev Quick Access

35 Debug i3 | = = B ix=Vanables 3 Express Breakpo = B
4 % Debug Server [Python Server] o=
a & unknu.wn _ _ Mame Value &
4 & MainThread - pid_8332_id_300857730888 -
— : » @ Globals Global variables
= <module> [object_booleans.py:d] — - —
— » il __builtins_ dict: {'_name_" 'builtins’, '_doc
= debug [pydev_debug.py:38] i
—_ = _ cached__ str: O/ Users/me/eclipse-workspa
= «<module* [run.py:10]
. . e e LDl mam mmmrabme foeme 00T
g Debug Server \ We are in our script >
- 7 (object_booleans.py),
B Conscle | [F] object booleans 2 |[2] Prblems at the first breakpoint = 0
Boolean :':Jsrr:'::-;,’-":'sr Q.01)
Pl
¥ import bpy
~def boolean operation (tool):
= ' " "Peyforms & Boolean operation on the active objsct

Figure 3.4.7 The first breakpoint

Step Over () the lines of the script main code until you reach the boolean_operation() procedure call
(Figure 3.4.8). Then Step Into (IEI) this procedure:

n i 11} =
E) Console | [F] object_booleans % |[* Problems Click . Step Into (E)7 |
bpy.ops.object .modifier apply feppl pr="HBool=an" r—
by-op . _APPLY JAEP-LY] to enter this procedure £

» boolean operation(bpy.data.objects] "Cylind=sr™])
print ("b:'jl_:'ps-r&':iﬂn: Dons ')

Figure 3.4.8 Stepping into the boolean_operation() procedure

Copyright Witold Jaworski, 2011-2019.

56 Creating the Blender Add-On

In response, PyDev enters the boolean_operation() procedure and stops on its first line (Figure 3.4.9):

3y Debug i3 | ¥ = B (®=Varables 37 |69 Express.. 9g Breakp.. = O
The boolean_operation() procedure)
Debug 5 - -
4 '#; = ui ErVEr is on the top of the Python stack =
4 & un nn:n.wn)) Mame Value
a # MainThread -|pid_8332_id_300857730888 -
— v— . - @ Glohals Global variables
= |:II:II:I|EEH_I:IFIEFEtII:Iﬂ‘[Db_]ECt_bDNEEHS.FI}f: - - -
—_ - > @ tool Object: <bpy_struct, Object(" Cylir
= <module> [ochject_booleans.py:17] /
= debug [pydev_debug.py:38] In the Variables pan-
< el you can see the *
)) tool argument —
1sole [F] object_booleans 53 Problemk B
“def boolean operation (tool):
= ean s:gsi:;s:: on the active object El
OK, we are going to execute the first
Ehe line of boolean_operation() procedure |+ 4
» bpy.ops.object.modifier add (type='EOJOOLEAN')
bpy.ops.object.modifier move up (modifier="Boolean"
bpy.context.object.modifiers["Bool=an™] .object = tool
bpy.ops.object.modifier apply(apply as='DATA', modifier="Boclsan')

Figure 3.4.9 Executing the code inside the boolean_operation() procedure

To keep track of the Boolean modifier fields, use the Expressions panel (Figure 3.4.10 — see also page 155):

(%)= Variables ¢9 Expressions 7 |®g Breakpoints E|| o v = O

Mame Value

%Y "bpy.context.object. modifiers['Boolean"].object” MNoneType: None
g8 Add new expression

In the Expressions pane you can
track the state of a modifier field

Figure 3.4.10 Tracking the selected fields in the Expressions tab

When the procedure is completed, click the Resume button () to finish this debug session' (Figure 3.4.11):

E) Console | [F] object_booleans 2 |[*! Problems = O
Gtool (Object): the other obhject, not affected by this method ==
bpy.ops.object.modifier add (type='BOJLEAN
bpy.ops.object.modifier move up (modifier="Boolesan"
bpy.context.object.modifiers["Bool=an™] .object = tool

bpy.ops.object.modifier apply (apply

1]
Fu
5]

Click B Resume ([F8)), to complete
execution of this script

boolean operation (bpy.data.o
P print ("bool opera tion: Done!"™)

ecta["Cylindsr"])

Figure 3.4.11 Resuming script execution (at the last line of the script)

" If you Step Over the last line of your script (in this example the object_booleans.py file), Python will drop it from the call stack. The debug-
ger will stop on the next line of the auxiliary module used by Run.py for loading your code (see page 138). We have nothing to do there,
thus | suggest to Resume this execution. It will end this debug session in a controlled way.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 57

In the console you will see the text printed by the last (diagnostic) line in our script (Figure 3.4.12):

o ‘;}.-. - 'Y _I.-* il i e S % ‘ﬁz @ | e PyDev #Dehug Cuick Access
_ — : .)
45 Debug 2 Execution control buttons| = 0 0=Vana.. I C5 Beprel S Break - O

4 $5 Debug Server [F?ecame grayf

4 unknown

p& MainThread —pid_8332_id_300857730888
g Debug Server x
The debug server is still

listening (it is ready for a
new debug session)

o Of course, you can also modify
El Console 53 @ object_booleans E your script in this text editor = H

BX % BEERIE -5

Debug Server

Debug Server at port: 5678
bool operation: Done! e

In the console you can see the “diagnostic”
text that | placed in the last line of our code

Figure 3.4.12 The state of the PyDev environment after the last Resume command

There were no runtime errors (so far). Let’s look at its results in the 3D View window (Figure 3.4.13):

Run. py

ole Autocormplete

The Run.py code in this Text Editor window does not require any further modifica-
tions (for this project). You can leave it in this test *.blend file “as it is”, minimizing
this pane to its header (so that you still will be able to click the Run Script button)

FYTHON INTERACTIV

Command History:

Figure 3.4.13 The results of our script

As we have intended, the object Cube mesh contains a hole, “drilled” by Cylinder. So, this script works proper-
ly. To re-use this test data in the next run, undo the result of this last operation. (Just invoke the Edit>Undo

command or press [ctr[{Z)).

For this project, | will not do any further modifications in the Run.py code, loaded into Blender Text Editor. | will
just click its Run Script button to start a new debug session for the updated version of object booleans.py
script, modified in Eclipse. That’s why | minimized this Text Editor pane just to the height of its header, so that
the Run Script button is still available (as in Figure 3.4.13). Then | saved the test *.blend file, preserving this
modified layout of the Scripting workspace.

Copyright Witold Jaworski, 2011-2019.

58 Creating the Blender Add-On

Ouir first run was successful, but how the debugger terminates the script execution in the case of a runtime er-
ror? To check this, just select Cylinder, making this object active (Figure 3.4.14):

Select Cylinder, making
it the active object

Figure 3.4.14 Preparing of a different input for our test

To debug again the script, just click the Run Script button in the Blender TextEditor header!. As long as the
PyDev debugger server process is "listening" the TCP port, it automatically breaks the script execution at the
first breakpoint.

Initially you will stop in the same place as in Figure 3.4.7 (page 55). Execute the subsequent script lines and
step into the boolean_operation() procedure. Stop on the line that assigns the tool object to modifier Boolean
(Figure 3.4.15):

#Debug X lwl R (*)= Vanables 3 ¢% BExpress.. 9g Breakp. & O
4 {2 unknown h N =
4 uﬁ'}lﬂainThread - pid_8332_id_3008577308288 Name Value
= booclean_operation [object_booleans.py:13] -
—_ @ Globals Global variables

<maodule> [ochject_booleans.py:17] BPvO tatt BPvOpsSubMod dule lik
V= reload [_init_py:169] y-pe 9 yopeon o Smoa e
= : . 4«——— | These two additional modules (compare this stack to Figure 3.4.9,
'..T..rF.l.D.a.Ej.[I.TF.'EE'.%!?.]......-J page 56) were invoked by pydev_debug.py module for reloading

= debug [pydev_debug.py:36] the object_booleans.py script before its execution
= <module> [run.py:10]
s Debug Server v £ >
El Console | [F] object_booleans 52 |[*]] Problems = O
= def boolean operation (tool): E

= """ "Performs & Boolean operation on the active obkhject
: Arguments:
@tool (Object): the other object, not affected by this method
rrr

T

bpv.ops.object.modifier add(type='EBEOCLEAN')

bpy.ops.object.modifier move_up (modifier="Boolean") ,— This I@ne will cause
- bpy.context.object . modifiers["Boolean"] .object = tool a runtime error

bpy.ops.cbject.modifier apply(apply as='DATA', modifier="EBooclsan')

Figure 3.4.15 The “tool” assignment line

The highlighted line in Figure 3.4.15 will cause a runtime error.

' The Run.py code that you run clicking Run Script button takes care of reloading the current version of your script before it starts its execu-
tion. If you have just modified it in Eclipse, simply save it before clicking the run button in Blender.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 59

Just Step Over () it and see what happens (Figure 3.4.16):

&= 4 viw O m RS R ,TB? [| & PyDev Quick Access

35 Debug &3 | ¥ = B (0=Vana. 23 Expre Break = O

4 # Debug Server [Python Server] Our script (object_booleans.py) (I =
4 @’ unknown disappeared from the stack! Value A
a 8 MainThread - pid 8332 id 3QpA57730888 .
— . @ Globals Global variables
= relead [_init__.py:173] .
—_ . @ module module: <module 'object
= reload [imp.py:315] - - -
— i PyDev opened in the text editor the default file
= debug [pydev_debug.py:36] (__init__.py) of the standard importlib package. The
= =<module> [run.py:10] Run.py code uses this package for reloading script
| Debug Server code, thus the next executed line is in this module. .
< >

El Console [F] object_booleans | [importliv 52 [*! Problems = O
: _bootstrap. exec (spec, module)
return =ys.modules [name]

iinally:
> e

: del RELOADING[name]
Except EeyError:
rass

In this situation you can only ¥ Resume ([F8]) script
execution, letting Blender to signalize this error

Figure 3.4.16 The state of the PyDev debugger just after a runtime error

When the runtime error (exception) occurs, Python removes the source object booleans.py module from the
call stack. (Compare the stacks shown in Figure 3.4.16 and in Figure 3.4.15). Thus, we lost the chance for in-
specting the local variables for their values in that very moment. All what we can do now is to Resume () the
execution of this script. It will allow Blender to handle this exception and show the standard traceback infor-
mation as well as the error message in the console (Figure 3.4.17):

& Console 22 |[#] Problems L] | =% bH & | ™ =&

Debug Server

Traceback |

Click this link to go directly to
14this place in the source code

.F_'LJ.E "C: ,-"Jsers,-’rre,-"ecllpse—ncrkspace,-":‘cclea'u'src\c:bject, boolean=.py", line 13, in boolean operation E
'L bpyv.context.object .modifiers["Boolean™] .object = tool \

TypeError: bpy struct: item.attr = val: BooleanModifier.object ID type does not support assignment to its self

’

The Blender APl message about the reason of this exception

Figure 3.4.17 The call stack traceback and the error message, displayed in the console

The most important information you will find in the last lines of this output. There is a direct link to the line that
caused this error, and the Blender APl message about the cause of this exception. In this particular case — the
script tried to assign itself (object Cylinder) as the tool object in the Boolean modifier.

Copyright Witold Jaworski, 2011-2019.

60 Creating the Blender Add-On

e The runtime exception (error) suddenly occurs in an unexpected place of our script. To check the state of
the local variables of a procedure/function where it happens, place its code into try: ... finally: statement

If you wish to turn off the remote debug server in Eclipse, close first the connected process (i.e. Blender).

e Once you have run the debug server, just keep it running for the whole time. It will close automatically when
you exit Eclipse IDE.

The auxiliary module pydev _debug.py (see its code on page 160), used by Run.py to load the script file,
searches the PYTHONPATH for its base name. It works this way, because in this code | used the __import__()
and imp.reload() methods for script execution. In the first lines of pydev_debug.py the path to your project is
added at the very end of the PYTHONPATH list'. This means that if another copy of your script exists in any of
the Blender PYTHONPATH directories, it will be loaded and executed instead of your file, and your breakpoints
will be ignored. This can be really confusing!

e Never use for your script file the name of any standard module or a registered Blender add-on, because
their directories occur earlier in the PYTHONPATH than your project directory. (You can examine the
sys.path list in Blender Python Console to learn about these directories and their order).

For example: one of the standard Python modules is named test. If you name your script test.py, then the
Run.py code will properly load (import) this standard module, instead of your script! From your point of view —
nothing will happen when you click the Run Script button, and you will not know what is going on, because there
will be no error message. (I lost three hours before | discovered that the problem is in the script name).

The bet practice is to follow the Blender convention for the add-on names, and name them using the
mode/window prefix: object_* mesh_*, uv_

*

, etc.

Summary

e To run a script in the PyDev debugger, use the Run.py stub code. Place it in the Blender Text Editor. Save
this Blender file as the test environment for your PyDev project (page 53);

e Before the first run, modify the string constants in the Run.py code. Place there the path to your script (in
SCRIPT) and the path to the PyDev remote debugger client module (in PYDEV_PATH) (page 53);

e To start the first debug session, activate in Eclipse the PyDev Debug Server (page 54), then click the Run
Script button in Blender (page 55);

e To start every subsequent debug session just click again the Run Script button in Blender (page 57, 58);

e To track changes of selected object properties, use the Expressions window (page 56);

e When you reach the last line of your script — click Resume () to complete its execution (as in page 56). If
you Step Over () this line, Eclipse will open the window with an auxiliary code, which is used by Run.py
for running your script. (There is nothing important to debug there);

e When an error (runtime exception) occurs in your script, Python closes your module and removes it from
the call stack. It also opens a new window with one of the standard Python or Blender modules. In such a
case Resume () this execution, then check the console for the error message (page 59);

" You can enhance the pydev_debug.py code in two ways: 1. Prepend (instead of appending) the script directory to sys.path; 2. Use the
new exec_module() method from the importlib package, available since Python 3.4;

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 61

3.5 Improving our script

Our Python script originated from the Blender operations log. As | shown in the previous section (see page 59),
it works properly only for the test scene configuration, where | have “recorded” these API statements. In this
section we will enhance this code so it will work for the user-selected objects. It will also become a more gen-
eral, so you will be able to specify the type of the Boolean operation for the boolean_operation() procedure.

Let’s start by setting the operation mode of the Boolean modifier. When you change this option, you will see
corresponding API statement in the Operations Log window (Figure 3.5.1):

¥ I Boolean () i ¥

- = In Blender API options (in this case - of
Apply ey the Boolean modifier) are represented by
keywords (of string type):

Operation: Chject:
Cifference ‘.E., = 2
Intersect 0.000001m

Operations Log
Union

Difference
************************ P : ar [ar="Boolean")

] .operation = ' INTERSECT'
nnte "] .operation "UNTOMN"
onte s["Boolean"] .operation = 'DIFFERENCE

Figure 3.5.1 API statements for selecting one of Boolean operations

It occurs that Blender API represents such enumerations as text keywords. You can alter the mode of a Boolean
modifier by setting its operation field to one of the three values: INTERSECT’, ‘UNION’, or ‘DIFFERENCE’. Of
course, if you need , you can also get the current value of this modifier field — for example, in the Python
Console (Figure 3.5.2):

Consaole Autocomplete lcon Wiewer

=== bpy.context.object.modifiers["Boolean"] operation

Current value of this field

Figure 3.5.2 Getting the current setting of a Boolean modifier

For quick “discovering” the API classes and fields names corresponding to user interface elements, you can
enable in the Blender preferences window (Edit>Preferences) the Python Tooltips option (Figure 3.5.3):

o

Interface
Themes Resolution Scale

- Line Width Auto
Wiewport

Lights Splash Screen & Developer Extras

o Tooltips & Large Cursors

Python Tooltips &

Anirnation Enable these options

¥ Editors

Figure 3.5.3 Enabling Blender API tooltips

Copyright Witold Jaworski, 2011-2019.

62 Creating the Blender Add-On

From this moment, when you hover mouse cursor over any field on the screen, Blender will display information
about its class and Blender API “path” (expression) that references this item (Figure 3.5.4):

[] . l'.'l

- Lt I:Ut”':"

When you hover mouse cursor over a field on
the screen, Blender will show such a tooltip:

Add Modifier

* O Boolea B = a v
Maodifier name. The class and
Walue: Boolean field name

The Python expression that
returns the data displayed on|
this screen

Figure 3.5.4 Python API tooltips

The modifier name (“Boolean”, in this case) is unique in the modifiers stack of a single object!. Note that
Blender API uses it as the index (keyword) for referencing elements of this stack (for example in the Apply
statement in Figure 3.3.7, on page 49). | used this observation in the new version of the boolean_operation()
procedure. | introduced here many enhancements (Figure 3.5.5):

tmport bpy |Additiona| arguments: op, apply

"'"'"Performs a Boolean operation|on the active object
Arguments:
.@tool (Object): the other owject, not affected by this method

Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}
Qapply (bool): apply results to the mesh (optional)

ob7 bpy.context.object <«— |objisan auxiliary shortcut for the active object

bpy.ops.object.modifier add(type='BOOLEAN")

mod = obj.modifiers[-1l}e—|mod represents our modifier (it is always added at the end of the list)

iwhile obj.modifiers[0] != mod Thi

‘ «——|This loop moves the

| bpy.ops.object.modifier move up(modifier=mod.name) T newly added. modifior
. to the top of the list

mod.operation = op Instead of the fixed text, | use

mod.object = tool the name of modifier mod

if apply:

mod .name

bpy.ops.object.modifier apply(apply as='DATA', modifier

Figure 3.5.5 Improved modifier handling in the boolean_operation() procedure

| extended the argument list of this method with two new elements: op determines the kind of performed Boole-
an operation, while the optional apply flag allows for leaving the result as the dynamic modifier. To make this
code more readable, | assigned the active object reference to an auxiliary variable named obj.

" When you add a new modifier, Blender gives it a unique name. For example, if | added another Boolean modifier to the modifier stack
shown in Figure 3.5.4, it would receive name Boolean.001. When the user changes the modifier name — Blender does not allow to type an
existing one.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 63

In the second local variable: mod | store the reference to the newly added modifier. Note, that initially | assign it
to the last element of the modifiers list. | do it, because | know that the object.modifier_add() operator always
places the newly added element in this position'. After this operation the modifiers list can contain one or more
elements. That’s why | replaced the single call to the object.modifier_move_up() operator with a loop. It moves
modifier mod toward the beginning of the list, until it reaches the first position. Because the modifier names are
created automatically, | cannot assume that the newly added Boolean modifier will receive name “Boolean”. If
there was another Boolean modifier in this list, the new one can be named “Boolean.001”, or similar. That's
why instead of the fixed “Boolean” text, copied from the Operations Log line, | pass the value of mod.name to
the modifier_move_up() and modifier_apply() operators.

| also added optional argument apply to the boolean_operations() procedure. By default, the value of this flag
is True, which means that the result of modifier mod is applied to the object mesh. (As in the previous sections).
However, if you set it to False, the newly added modifier will remain as the first element of the modifiers list, and
the result of this procedure will remain “dynamic”. (It will be a quick method for adding Boolean modifiers).

Let’s try to modify the main code of our script so that it will use eventual other objects selected by the user as
the subsequent “tools”, applied to the active object. Thus, there is an elementary question: how to get the list of
currently selected objects? You cannot get a hint about it from the log window, because operators read this in-
formation internally from the environment data objects (unknown for us). Reasoning that such an information
should be a part of the “execution context” of this script, | assumed that it is in one of the bpy.context object
fields. Let’s look at the contents of this object, using the autocompletion window (Figure 3.5.6):

When you type the dot in this expression, PyDev

will open the list of its methods and fields
L] bpy.context.

boolean oper Enter: apply completion.
ﬂ.selected_nndes . “q - Ctrl: replace current word (no Pop-up fo
|0§sele::ted_u:ubjects LW I A

rrint |

© selected_pose_bones The name of this field looks promising, but

Conscle © selected_pose_bones_from_active_{PyDev does not display field descriptions
Mo consoles to display ol © selected_sequences in the tooltip window

Figure 3.5.6 Browsing members of the bpy.context object

Unfortunately, PyDev does not displays tooltips for the fields, so let's use .selected_object in our code and try
to find its description in bpy.pypredef (As it is shown in Figure 3.2.7 and Figure 3.2.8, on pages 41 and 42):

bpv.context.selected objects

L g

[F] *object_booleans [F] bpy 2 = O
vizible bases = [types.0bjectBase]
selectable objects = [types.Cbject]
selectable bases = [types.0bjectBase]
selected_r:u]::jectsl = [type=s.0bject]
selected basez = [types.0bjectBase]
editable okbjects = [types.0bject]

Figure 3.5.7 Searching for the description of the bpy.context.selected_objects field

" This is my assumption, based on long experience: from programmer’s point of view, modifier “stack” is a list. (I have been using Blender
for many years). The operation of adding a new modifier is not documented. (The official manual often skips such trivial steps). If you want
to be more cautious than me — copy the obj.modifiers list before invoking modifier_add() operator, then compare their elements.

Copyright Witold Jaworski, 2011-2019.

https://docs.blender.org/manual/en/latest/modeling/modifiers/introduction.html#interface

64 Creating the Blender Add-On

The bpy.context is a specific object, because its contents depend on the type of the Blender window that has
invoked your script (see page 141). What’s more, there are no descriptions for its fields — also in the official doc-
umentation (!). | had to rely on the comments from other users, which | found using the Internet search tool.
They said that the selected _objects represents the current selection set. However, in the header file of the
bpy module | also found another field with intriguing name: selected_editable_objects (Figure 3.5.8):

= O

It is wort to check, what is the
difference between these two lists

Figure 3.5.8 The bpy.context fields that | want to check

| would like to know the difference between these fields'. In the first trials that | conducted using the test *.blend
file, both fields returned identical results. Ultimately, | found the difference when | linked (File 2Link) to the test
scene an object named Cone, from another Blender file? (Figure 3.5.9):

(& |In 3D View window | selected 2 objects: Cone and Cube |
Scene Collection
¥ 'E]' Collection

[

’Then in Python Console | listed of both bpy.context.selected* lists: ‘

Autocomplete Python Console

bpy.context.selected objects

v Cube
Vv Cylinder

S Light

[bpy.data. objects['Cube'], bpy.data.objects['Cone']]

bpy.context.selected editable objects
1y data.objects['Cube']]

Cone is linked from another file selected_editable_objects does not contain linked objects ‘

Figure 3.5.9 The difference between the selected_objects and selected_editable_objects

It occurs that the selected_editable_objects list does not contain the linked objects — Cone, in this case. (In-
deed, you cannot edit properties of such an object — thus the name of this bpy.context field). However, |
checked that | still can use this linked object as the “tool” in the Boolean modifier.

o In this script | will use the bpy.context.selected_objects field for getting the list of the selected objects.

Fortunately, Blender API provides the selected_objects field practically in all contexts, as it does for the
bpy.context.object field. (The APl documentation describes that both fields belong to the Screen context).

' This is not a pure curiosity. In Blender 2.5 the operations log window showed only the operator statements, so you could not find out there
how to refer the active object in Blender API. The bpy.context was also undocumented (as it is now). That's why | decided that for the
active object reference | will use the bpy.context.active_object field. A few months later | tried to append my script to one of the Blender
menus. | discovered then that in this case my code is invoked in a different context, in which bpy.context object has no active_object field!
That's why in Blender 2.8 | am carefully checking the context fields that | am going to use in my script. On the other hand — it is a shame that
Blender Foundation has not documented this important part of the Blender API for nine years!

2 Blender can use every *.blend file as an external “datablock library” (a container for objects, meshes, materials, textures, nodes, ...). You
can dynamically link any of these items to a scene in another Blender file.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

https://docs.blender.org/api/blender2.8/bpy.context.html
https://docs.blender.org/api/blender2.8/bpy.context.html

Chapter 3 Basic Python Script 65

After this lengthy discussion about the potential information sources, | changed the main code (Figure 3.5.10):

selected = list (bpy.context.selected objects#— selected. static "working copy” of this list |

selected.remove (bpy.context.ob]j ect)'\

Remove the active object from this working copy |

for tool in selected:
boolean operatiqn(tool, 'DIFFERENCE")

|Use this “shortened” selection list as the source of the “tool” objects |

print ("object booleans.py: Done!")

Figure 3.5.10 Improved main code of the script

To perform given Boolean operation for each of the user-selected objects, | exclude the active (“target”) object
from this list. (Otherwise it would cause an error — as described on page 59). For this purpose, | copy the con-
tents of the bpy.context.selected_objects iterator into a static list, named selected. Then | removed from
selected the active object. Finally, | invoked the boolean_opeartion() procedure for every element of this
“shortened” list.

Let's check now, if such a modified script works properly. | added to the test scene another object: Sphere.
Then | selected all these three objects in following order: Cylinder, Sphere, and Cube, and run the script. (I
made sure that the debug server is running, and clicked the Run Script button in Blender — as on pages 54, 55).
Figure 3.5.11 shows the initial state and the final result:

in object Cube

1. Cylinder \ A recess and a hole y \

Run Script

Figure 3.5.11 Final result of the modified script

There were no errors, and the script result looks properly.

Now undo these script results (-E) and select again Cylinder and Sphere. Then select also another object:

Lamp (see the test scene outline in Figure 3.5.9, page 64). Finally select object Cube (so it will be the active
object again). Our script will fail for such input data:

&l Conscle 53 Problems : >
/_ |The error occurred in the last line of boolean_operation() |

Debug Server

File "C:/Users/me/eclipseAorkspace,/Boolean/srchobiect booleans.py", lira
bpy.ops.object.modifier apply(apply as='DATA', modifier=mod.name)

|I’\:I

|You cannot Apply an inactive modifier

BuntimeError: Error: Modifier iz disabled, skipping apply W

Figure 3.5.12 An error, caused by an attempt to use Lamp as the “tool” object

Copyright Witold Jaworski, 2011-2019.

66 Creating the Blender Add-On

What has happened? Boolean modifier ignores objects that does not contain mesh data, like Camera or Lamp.
In the result, the new modifier, added to the active object (Cube) with Lamp as the “tool”, will never become
active. That's why Blender raises a runtime exception when the script attempts to call modifier_apply() proce-
dure for this (still disabled) modifier.

How to avoid such situations? You can check if the modifier is enabled just before calling the Apply operator.
However, | do not especially like this idea. In the future it may happen that Blender will raise a runtime exception
in the previous step, on the attempt to assign a Lamp object to the Boolean modifier. (In principle, this is an in-
valid operation). That's why it is better to not invoke the boolean_operation() procedure for the objects of
wrong type. This applies not only to the improper type of the tool argument, but also to the other cases. For
example - | can easily imagine a situation in which a user selects by mistake Lamp as the active (target) object!

To precisely determine what object types accepts Boolean modifier, | added to the test scene two additional
objects: Cone, which is linked from another file, and Torus, which is a collection instance. (This collection is
hidden and contains just the source object). Figure 3.5.13 shows the current state of the test scene and its
structure in the Outliner window (set to View Layers view):

e -
= scere n:::.:.:le|:
Ll Object type iy

Cone is a y 1
linked object ‘

Y Sphere

instance i =

Torus is an

Figure 3.5.13 Additional objects in the test environment

Outliner shows the object types as icons. Our script needs this information for checking if the selected objects
contain meshes. But which of the Blender API fields returns the Blender object type?

In searching for this field, | used the Outliner window in the Data API view (Figure 3.5.14):

b b , v Edit _.__.'.':3 + — Mo Keying Set Active

pAUYIR" O Blendfile Data Here you can search (by name)

Filename for particular datablocks

File Has Unsaved Changes 4

These are the lists exposed by
the bpy.data

Scenes
Objects

Materials

Mode Groups

Figure 3.5.14 Outliner window (in Data API view)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 67

The Outliner window in the Data API view shows the entire content of the current *.blend file. In principle this is
just a user interface for displaying contents of the bpy.data lists. When you expand the Objects collection, you
will find there all the scene objects. Now you can examine their fields (Figure 3.5.15):

T=v =+~ Edit j e T=v =+ Edit je Mo Keying Set Active
v) Elendfile Data v) Elendfile Data

Filenarne Filenarne

File Has Unsawed Changes File Has Unsawved Changes

File is Sawved File is Sawved

Use Autopack Use Autopack

“ersion Wersion

Cameras Cameras

SCenes Look inside Scenes

_ this object... :
Ohjects ¥ Ohjects

= B Camera |I- v M Camera
Cube Marme Carmera
Cylinder Full Marne
Light Iz Ewaluated
Sphere Criginal 1D
Torus Users
B Torus [instancel Fake User
= B Cone Tag
Materials Is Indirect
Mode Groups Library

Meshes Static Owerride

Loz FreslEt .. maybe this is the
Libraries Data field | am looking for?
Screens Twpe Camera
Window Managers hied= - h‘

Images Type of Object; Camera Python tooltip:

Lattices

CURYES
Metaballs

Figure 3.5.15 Browsing the object data

| started browsing fields of the first object from the Objects list, searching for an item that displays object type.
(In this case it was a Camera). | quickly found a field that bears promising name Type (and the value: Camera). |
stopped my mouse over this item for a few seconds, so Blender displayed its description and API details. They
confirmed me that this is the field | need. (It seemed to return the correct information and was read-only). Using
the reference expression from the tooltip as the example, | quickly checked the type values of other objects:

BE Console Autocomplete lcon “Wiewer

=== bpy.data.objects["Camera”]. type
' CAMERA

It seems that Booelan modifier
=== bpy.data.objects["Cube"] . type requires ‘MESH’ objects
'MESH"

=== bpy.data.objects["Light"].type
"LIGHT!

Figure 3.5.16 Quick check of the fype values in other objects

Copyright Witold Jaworski, 2011-2019.

68 Creating the Blender Add-On

It occurred that Camera is an object of ‘CAMERA’ type, Lamp — ‘LIGHT’, and the Torus instance — ‘EMPTY’ (I
did not show this last case in Figure 3.5.16). All the other objects in the test scene are of ‘MESH’ type. It pre-
cisely matches the icons shown in the View Layer mode of the Outliner (see Figure 3.5.13). Thus, it seems that
the type field indeed contains the information we need. Let’s check it also in the API description (Figure 3.5.17):

[F] “object_booleans i3 | click the link in the -
tooltip window...

* str Found at: bpy

[F] “object_boaleans [Fl bpy 2 =
_ PyDev automatically opens the corresponding
1. 1 predefinition file and highlights field declaration
type = str
Ereturns: =snum in ['MESH', 'CURVE', 'SURFACE', 'META', 'FONT', '"ARMA

Figure 3.5.17 Checking details of the Object.type field

Using PyDev tooltip link, | quickly found the Object.type declaration, as in figure above. Its description confirms
my observations. Conclusion: every object passed to boolean_operation() as the tool argument must be of the
‘MESH?’ type.

| will not show this in another illustration, but |
also checked that Blender does not allow adding
modifiers to the objects linked from another file IV EEE TR =Yk 2= IXweTs =L BRI

Console Autocomplete lcon Wiewer

(as the object Cone in our scene). This means SH'
that we cannot point such a linked object as the | bpy.data.objects["Cube”] . type
active (target) object for our script, because it will "MESH'

cause an error. | also checked in Python console
that the type field returns ‘MESH’ value for the Figure 3.5.18 Types of the linked (Cone) and local (Cube) objects
local objects (as Cube) as well as the linked

objects (as Cone). So - how to recognize a linked object in the script?

To find such a “distinguisher”, | examined the Cone object fields (in the Data API view of the Outliner window). |
noticed there a field named library (Figure 3.5.19):

For a linked object, this field returns the source file

Is Indirect

Library test assets.blend

b
Python tooltip:

.blend
ets blend

ihrary

=cts["Cone"] . library

Figure 3.5.19 Reference to the source (library) file

Looking at the bpy API header declarations | can see that this library field returns a reference to an object of
Library class. It contains the full path to the source file and other details. However, the most important thing for
me is that for all local objects library returns None (I checked this in the console). So - this is the flag | need!

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 69

Using this information, | can update the main code of the script (Figure 3.5.20):

selected = list (bpy.context.selected objects)

lactive = bpy.context.objectw._ [active: auxiliary shortcut to the active object |

|Sometimes the active object is not among the selected! |

print ("Cannot execute: target object is not a mesh")
else:

print ("Cannot execute: target object is linked from another file'")

else:
for tool in selected: /| ‘/,_¢Checmngﬂmtypeofme“moPOMed |
|if tool.type == 'MESH'!
boolean operation(tool, 'DIFFERENCE")
else

Figure 3.5.20 Validation of the input data (in the main code of the script)

For the greater code readability, | created auxiliary variable active and assigned it the active object reference.
After some ftrials | also discovered that in certain scenarios the active object is not among the selected objects.
That’'s why | added a condition for this case in the next line. (Otherwise an attempt to remove object active from
list selected would raise a runtime exception).

In the further lines | am checking if the active object is of the ‘MESH’ type. If so — | am also checking if it is not a
linked object. Note that | am also testing if its mesh is not a linked datablock’. (I have found in the Outliner win-
dow that Object.data field returns the reference to its Mesh object).

Finally, when the active object seems to be OK, | am starting the loop for all the tool objects from list selected.
However, before invoking the boolean_operation() procedure | am checking if object tool is a mesh. If not — |
am excluding it from the actual (scene) selection, so the user will not use it again by a mistake. (The commands
that manipulate current selection set are not displayed in the Operations Log window. | have found in the API
documentation? that | can use the select_set() method for selecting/deselecting scene object).

In the next section | will modify this code so it will “catch” all unexpected runtime errors. | will also improve read-
ability of the messages displayed by this script.

" Sometimes it may happen that a local object uses the mesh data linked from another file. You can, for example, “paint” this mesh using a
local material assigned to the object, not the object data.

2 In the case of other “selectable” datablocks — for example, mesh vertices or edges — you can find in Outliner a field named select, which
you can set to True/False. The bpy.types.Object class, which represents a scene object, also had such a field in the previous Blender
versions. Thus | opened Blender 2.8 Release Notes, which describe all the changes introduced in this new version. On this page | found
section about the changes in the API. There | entered Scene and object API subsection, where | ultimately discovered a fragment about this
issue. | think that this change is related to the *blend file architecture modifications. In Blender 2.8 each View Layer (aka render layer in the
API) preserves its own selection set. Every View Layer also contains instances (references) to the scene objects. They are represented by
the bpy.types.ObjectBase class. In this class you can find the “classic” select field, which controls the object selection state in the “host”
view layer. Another field of the ObjectBase class is object, which returns reference to the scene object (instance of the bpy.types.Object
class). You can find the list of the objects (“object bases”) from the current view layer in the following bpy.context iterators:

selectable_bases, editable_bases, visible_bases, selected bases, active base.

Copyright Witold Jaworski, 2011-2019.

https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API#Object_Selection_and_Hiding
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API#Object_Selection_and_Hiding

70 Creating the Blender Add-On

Summary

e The Python Tooltips option (page 62) is a great tool for learning Blender API fields directly from the screen.
You can enable it in Blender Preferences (page 61);

e Blender always appends a new datablock to the corresponding datablock list. This rule also applies to the
object modifiers list. That's why you can assume that the newly added modifier is always in the last ele-
ment of this list (as | did on page 62);

e Blender also enforces the uniqueness of datablock names. That's why | pass the modifier datablock name
to the operators (page 62); | do not need to know this name — it is just an id, created and managed by
Blender;

e There are several fields (iterators) in the bpy.context class that provide information about currently select-
ed objects. You can find them in the PyDev autocompletion window (page 63). Unfortunately, they are not
documented. Usually you will use the bpy.context.selected objects iterator. However, if you need a list
without eventual linked objects or object instances — use selected_editable_objects (page 64). In other
cases, a more useful can be selected_bases: it returns the references (instances of the ObjectBase
class) to the objects used int the current view layer. Anyway, it is a good practice to check the contents of
such an iterator in a test scene, before using it in the code;

e Some information about the API objects is not displayed in in the operations log window or in the screen
tooltips (for example: scene object type). To read it, you can use the Outliner window in the Data APl view
(page 66). In this window you can browse the entire contents of the current *.blend file. You can get the Py-
thon expression for any field in this structure using the tooltip window. (Python tooltips are also available in
the Outliner — see page 67);

e Use the bpy.types.Object.select_set() method to switch the selection state of a scene object (to select-
ed/not selected — see page 69). To get the current selection state, use another function (method):
select_get().

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 71

3.6 Handling the runtime errors and user messages

Looking at the result of the previous section (Figure 3.5.20, page 69) you can notice that the input validation
occupies most of the script. (This proportion is especially striking when you compare this code with its earlier
version, shown in Figure 3.5.10 on page 65). Finding the invalid data is important, but equally important is prop-
er user notification about the reasons of aborting the requested action. (“Proper” means that the user should
understand the reason and know how to avoid it in the future). In this section | will try to make this code as “er-
ror-proof” as possible! and improve the error messages. These changes will be also useful in the next chapter,
when | will convert this script into a Blender add-on.

Let’s start with handling the error messages. | think that it would be helpful to add an additional hint: the object
name, where it is applicable. In this way we increase the chance that the user will notice and understand the
mistake she/he has made. Figure 3.6.1 shows a new version of the main code. (Its results are exactly the same
as the results of the code from page 69: | just changed the structure):

i INPUT_ERR = "cannot execute" i, |Constants, returned in the first element of the main() function result
'ERROR = "run-time error" ;
{WARNING = "warning" __ [further in this text | will use ERROR

\SUCCESS_= "completed" ' |and WARNING constants

Performs a Boolean operation on the active obje
selected objects as the 'tools' 1

Arguments: :

Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}
@apply objects (bool): apply the results to the¥mesh (optional)

Qreturns (list): one or two message parts: ﬂ<flag>} Optional details]

1
1
1
1
1
1
1
1
?t, using the other

selected = list (bpy.context.selected objects)
active = bpy.context.object
if active in selected: selected.remove (active)

|I added the object name in the message
I

if active.type != "MESH': . \
‘return [INPUT ERR, "target object ('%s') is not a mesh" % active.name]
else:
if active.library != None or active.data.library != None: . _ . _

return [INPUT ERR, '"target object ('%s') is linked from another file'

else
for tool in selected:
if tool.type == 'MESH':
boolean operation(tool,op, apply objects)
else:
777777777777777 tool.select set (False)
- lf?},?{@,,,[?,@@@?@s,,],,3 / |A minimal main script code

'result = main ('DIFFERENCE") w

iprint ("bool operation --> %s" % str.join(": "'reSUlt)‘kk_Témpmaw“dmgnoﬁm”ﬁmemem

Figure 3.6.1 Main script, modified

The main code of the script should be short and readable, so | grouped most of the lines written in previous
section into new function named main(). (It will be easier to make calls to this function in the add-on code). The
main() function returns a list, which first element is a flag. It can be one of the four constants (string keywords)
that | declared for this purpose. When there are no issues — main() returns a single-element list that contains
the SUCCESS constant. Otherwise, in the second element of the result list you will find an error message.

" Remember, that “the user” can also mean just you! It is enough that you will try to run this utility after a long break (several months or
longer). | think that you will not remember anything of the specifics of this script.

Copyright Witold Jaworski, 2011-2019.

72 Creating the Blender Add-On

| reduced the script main code to two lines: the first calls the main() function, the second displays the result
(actually it prints it in the console — see the last lines in Figure 3.6.1). In this way | separated the message for-
matting (in the main() function) and displaying (in the script main code). This is always a more flexible solution
than placing the print () statements everywhere. In this script the only print() statement is in the last, temporary
line. In the future, when | use main() in the Blender plugin code, | will display eventual messages in completely
different way.

| also composed the scene object names into the error messages. | think that this additional hint will help the
user to find out what she/he did in a wrong way. Figure 3.6.2 shows the script results, obtained for various com-
binations of the selected objects. (I did these tests in the scene as in Figure 3.5.13 on page 66):

&) Console 3% |[®]] Problems |Active object: Cube (local mesh) |

Debug Server |Active object: a collection instance (Torus) }

bool operation —-> completed
bool operation —--> cannot execute: target object ('Torus Etnstance]'] iz not a mesh
bool operation --> cannot execute: target object ('Cone') iz linked from another file

|Active object: linked from another file |

Figure 3.6.2 Results of the script, for various variants of the active object

Then | added further tests to the main() function: they validate the remaining (“tool”) objects in the current selec-
tion set (Figure 3.6.3). Because each of them ends with a return expression, | could replace the nested if: else:
statements with a more linear structure. (For a greater number of simple exclusions, such multiple-level nested
conditions are less readable):

selected = list (bpy.context.selected objects)
active = bpy.context.object
if active 1in selected: selected.remove (active)

if active.type != 'MESH': Each of these conditional statements quits this function, so |
return [INPUT ERR, "target/0bj resigned from nesting them with the “else:” statements

if active.library != None or active.data.library != None:
return [INPUT ERR, "target object ('%s') is linked from another file" %

! return [INPUT ERR, "this operation requires at least two objects']

for tool in selected:
if tool.type == 'MESH':
boolean operation(tool,op, apply objects)
else: i i i i
— |Add this object name to the skipped list

If there is no skipped object: that's OK.
ffiff"i{[a’{Eﬁiﬁﬁeﬂd?Eie’*’cﬁff{Hfsfﬁcﬂcféfsfj]w/i Otherwise signalize a warning or an error [~~~ 77777777
iif len (skipped) < len(selected):

o)

return [WARNING, "completed, but skipped non-mesh object(s): '%s'" %
str.join ("', '",skipped)]

lelse:
3 return [INPUT ERR, "non-mesh object (s) selected: 'ss' " %

Figure 3.6.3 Further modifications in the main() function

Before running the main loop, | am checking if the selected list is empty (it may happen, if the user selected just
a single object). If so — | signalize an error.

Instead of excluding the non-mesh objects from the current selection set (as in Figure 3.5.20, page 69), | decid-
ed to enumerate their names in a warning message. For this purpose, | am collecting them in an auxiliary list
named skipped. If there has been at least one “tool” object processed in the loop — | signalize them in a warn-
ing. Otherwise | use the same text as an error message.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script

73

Figure 3.6.4 shows the results of the further tests, executed for various combinations of the selected objects. (I

did these tests in the scene as in Figure 3.5.13 on page 66):

& Console 32 | [®] Problems
Debug Server ‘

bool_nperatiun ——> cannot execute: this operatyon requires at least two objects

[Selected: Cube (only) |

|Selected: Cone and Torus + Cube

bool operation —-> warning: completed, but skipped non-mesh object(zg): 'Torus (instance)’

bool operation —-» cannot executei non-mesh object(s) selected: 'Torus (instance)’

\ |Se|ected: Torus + Cube

Figure 3.6.4 Further tests of the script

I do not have any illusions that these five validation tests that | have already implemented will allow me to avoid
all possible runtime errors. To have at least marginal control over remaining runtime exceptions, | placed the

whole code of the main() function into a fry: ... except: statement (Figure 3.6.5):

iimport traceback «—— |l am using the print_exc() function from this module

def main (op, apply objects=True):
""" Performs a Boolean operation on the active object, using the other
selected objects as the 'tools'
Arguments:
Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}
@apply objects (bool): apply results to the mesh (optional)
@returns (list): one or two message parts: [<flag>, Optional details]

the code of this function - as in Figure 3.6.3 (page 72)

|“Catch” every kind of exception into variable err |

roqrm g

'if 'active' in locals () : cntx msg += "occured for object (s):

.S o i
A U active.name
} x |Check, if this local variable exists |—/_> ”””””” i
'if 'tool! in locals(): cntx msg += ", '3s'" Stool.name
- Error message: the standard text +
return [ERROR, "%s %s" % r(féft’f’(feiff)fmc’ﬁ’ﬁ’;i"msijil] eventual information about the context
12 ° ° o ! 12 . |

Figure 3.6.5 “Catching” eventual runtime exceptions in the main() function

| use an except: statement that will “catch” every type of Python exception and place it in the err variable. Then
the traceback.print_exc() function will print in the console the standard, detailed traceback information about
the Python stack in the moment of raising this exception. This is a diagnostic message intended for the pro-

grammer (i.e. for me), which will normally appear only in the Blender system console window.

For the user | format an additional text about the context of this error. | use for this purpose a helper variable
named cntx_msg. | suppose that most of the runtime errors will occur in the “core” code of the
boolean_operation() procedure. That's why | am trying to place in cntx_msg the names of the active object
and the current tool object. Of course, an error can also appear in the other parts of this code. That's why be-
fore placing the active and tool object names into the message | am checking, if they are defined at all. (If their

names are in the locals() collection).

Copyright Witold Jaworski, 2011-2019.

74 Creating the Blender Add-On

| did not have to wait a long time for an unexpected error, which would allow me to check this newly added try:
... except: statement. It was enough to create clones of objects Cube and Cylinder. (Such objects, like Cube
and Cube (clone), share the same mesh named Cube — as it is shown in Figure 3.6.6):

object Cube

object Cube (clone)
object Cylinder (clone)

B Cube [clone)

o Cube

Figure 3.6.6 Clone of the Cube object (mesh data, shared between two objects)

Then | selected objects: Cylinder (clone) and Cube (clone) and run the script. Figure 3.6.7 shows the result:

& Console 2 | [#]] Problems | S
Debug Server — | The error occurred in boolean operation() procedure, —
Traceback (most recent call last): in the line that invokes operator modifier_apply()

File "C:/Users/me/eclipse-workspace/Boolean,/srch\object booleans.py", line 57, in main

boolean operation|(tool,op, ply objects)
File "C:/Users/me/eclipse-wogkspace/Boolean/src\object booleans.py"™, line 27, in, boolean operation)!

File "C:%\Program Files‘\Blender\2.&80\scripts\modules‘bpyviops.py", line 200, in call
ret = gp_call (gelf.idname py (), NHone, kw)

Result of
print_exc()

bool operation --> run-time error: Error: Modifiers cannot be applied to multi-user data

occured for object(s): 'Cube (clone)', 'Cylinder (clone)' \ .
This is the message returned

from the main() function

Figure 3.6.7 Script result for a clone object

Fine. | can see that “runtime error catching” works properly. As intended, the main() function has returned the
error message that contains the object names. | have just completely forgotten that Blender does not allow to
apply modifier results to a shared mesh. Thus, let’s introduce a fix to the last lines of boolean_operation()
(compare the code below with the code shown in Figure 3.5.5 on page 62):

|The users field is the datablock “user counter” — | have found them in Outliner |

if apply: T T - ,
if obj.users > 1 or obj.data.users > 1: ’A/_ Because of this keyword, | am

bpy.ops.object.select all (action='DESELECT') selecting only the active object
5 obj.select_set(True) ‘cclcct ob, only | /3 |
: bpy.ops.object.make single user (type=VSELECTED OBJECTS',

object=True, obdata=True)l

bpy.ops.object.modifier apply (apply as='DATA', modifier=mod.name)

Figure 3.6.8 Creating a local copy of a mesh before invoking the modifier_apply() operator (last lines of boolean_operation())

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3 Basic Python Script 75

Before invoking operator modifier_apply(), | am checking if the mesh reference counter (users field) of the
active object and its mesh are greater than 1. If so, | am creating its copy (by invoking make_single_user()).

You can get lost after all these changes. To stay “on the track”, see below the complete script code:

import bpy
import traceback

def boolean_operation (tool, op, apply=True):
'"'"Performs a Boolean operation on the active object

Arguments:
@Qtool (Object): the other object, not affected by this method
@Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

Qapply (bool): apply results to the mesh (optional)
obj = bpy.context.object
bpy.ops.object.modifier add(type='BOOLEAN'")
mod = obj.modifiers[-1]
while obj.modifiers[0] != mod:
bpy.ops.object.modifier move up(modifier=mod.name)
mod.operation = op
mod.object = tool
if apply:
if obj.users > 1 or obj.data.users > 1:

bpy.ops.object.select all(action='DESELECT")
obj.select set (True)
bpy.ops.object.make single user (type='SELECTED OBJECTS',
object=True, obdata=True)
bpy.ops.object.modifier apply(apply as='DATA', modifier=mod.name)

INPUT_ERR = 'cannot execute'
ERROR = 'run-time error'
WARNING = 'warning'

SUCCESS = 'completed'

def main (op, apply objects=True):
''"'" Performs a Boolean operation on the active object, using the other
selected objects as the 'tools'

Arguments:

@op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

@apply_objects (bool): apply results of the Boolean operation to the mesh (optional)
@returns (list): one or two message parts: [<flag>, Optional details]

try:
selected = list (bpy.context.selected objects)
active = bpy.context.object
if active in selected: selected.remove (active)

if active.type != 'MESH':
return [INPUT ERR, "target object ('%s') is not a mesh" % active.name]
if active.library != None or active.data.library != None:
return [INPUT ERR, "target object ('%s') is linked from another file" % active.name]

if not selected: return [INPUT_ERR, "this operation requires at least two objects"]

skipped = []
for tool in selected:
if tool.type == 'MESH':
boolean operation(tool,op, apply objects)
else:
skipped.append (tool.name)

if not skipped: return [SUCCESS]
if len(skipped) < len(selected):

return [WARNING, "completed, but skipped non-mesh object(s): '%s'"
% str.join("', '",skipped)]
else:
return [INPUT ERR, "non-mesh object(s) selected: '%s' " % str.join("' '", skipped)]
except Exception as err:
traceback.print exc()
cntx _msg = ""
if 'active' in locals(): cntx msg += "occured for object(s): '%s'" % active.name
if 'tool' in locals(): cntx msg += ", '3s'" Stool.name

return [ERROR, "%s %s" % (str(err),cntx msg)]

result = main ('DIFFERENCE")

oo o

print ("bool operation --> %s'" % str.join(": ",result))

Figure 3.6.9 Complete code of the current script version

Copyright Witold Jaworski, 2011-2019.

76 Creating the Blender Add-On

Note that | placed all the input data validation and eventual error message handling in the main() function. This
auxiliary code occupies more lines than the core action, grouped in the boolean_operation() procedure. This is

a typical proportion in the programs, which must interact with the most unpredictable element: the user @).

At this moment the only remaining explicit (i.e. entered “manually” in the code) parameter of this script is the
Boolean operation type (‘DIFFERENCE?’). In the next chapter | will create a simple user interface which will al-
low the users to choose this value from a menu. It will be a part of the Blender add-on code.

Summary

e | placed into a function named main() the whole main script code, prepared in the previous section, This
function returns a list that contains: the result keyword and eventual error message (page 71). Such a func-
tion can be easily integrated into the Blender add-on;

e ltis a good idea to provide a hint about the operation context in the warning and error messages. In the
case of this script these are the names of the active object and (usually) the “tool” object that caused the
signalized problem (pages 72 and 73);

e To handle (in a minimal form) all the unexpected runtime errors, place in the main() function the try: ...
except: statements (page 73);

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 77

Chapter 4. Converting API Script into Blender Add-On
Probably you know the Blender preferences window (Edit>Preferences). | suppose that you already looked at
the Add-ons tab:

-

e

—_

Themes Mesh Click here to enable/disable an add-on

Wigwport v

Interface Official Cornmiunity Testing Imstall... = Refresh

Lights Description: Utilities for 30 printing

Editing Location: 30 view = Toolbox
: File: C:\Program Files\Blendery2. 804scriptsiaddonsiobject_print3d_utilsy__init . py
Anirnation
Author: Campbell Barton

Add-ons Internet: E Diocumentation iRy Report & Bug

Input L

Mavigation
Kewrnap
term
& Load

File Paths

»
[}

]
[}

Save Preferences

Every Blender add-on is a special Python script. This window allows you to compose the “working set” of
plugins (add-ons) according to your current needs. During initialization, an add-on can add new elements to the
user interface: buttons, menu commands, and panels. In fact, the whole Blender Ul is written in Python, using
the same API methods that are available for the plugins.

In this chapter, | will show you how to convert our Blender API script into a Blender plugin. This add-on will add
to the Object menu the “destructive” Boolean commands (Difference, Union, and Intersection).

Copyright Witold Jaworski, 2011-2019.

78 Creating the Blender Add-On

4.1 Adaptation of the script structure

So far, our script was "linear" - it executed what was written in the main code, from the beginning to the end.
The Blender plugins work differently, as you will see it in this section. Therefore, their code must have a specific
structure.

Let’'s begin with the plugin “nameplate”. Each Blender add-on must contain a global variable bl_info. It is a dic-
tionary of strictly defined keys: ,,name”, ,,autor”, ,location”, etc. Blender uses this structure to display the in-
formation in the Add-Ons tab (Figure 4.1.1):

Official Community Testing

bl info = {
"name": "Boolean operations', Object
"author'": "Witold Jaworski',
"version'": (0, 5, 0),

"blender": (2, 80, 0), ser Motion Tracking
"location": "Object > Boolean", — _ ______ -
"support": "TESTING", € ==-=-======- - MNode
"category': "Object", #---=-=-=-=-=—=—-—=——-—-—-—-—---- Object
"description": "Simple, 'destructive' Boolean o i
"warning": " Still in the 'beta' version - use Paint

"wiki url'": " http://airplanes3d.net/scripts-254 Clrue Pie Me
"tracker url": " http://airplanes3d.net/scripts-

}

- "description"

Cescription: Performs simple ['destructive'] Boolean operation on selected objects
Location: Chject = Boolea
File: ChlsersimeitpphatatRoamingiBlender Fou. . der \scriptsiaddonstobject booleans. py

Authar: infitald Jaw: 4

Y - ! :) "warning"
Warsion: 0.5 version
Warning: il i = hets! wersin = with -a1Fin

Warning: A Still in the 'beta’ version - use with caution

E Cocumentation 'fj Report a Bug WE

Figure 4.1.1 The b/_info structure and its pane in the Preferences window

You can leave some of these keys with empty strings — for example the documentation and bug tracker
addresses (,,wiki_url”, ,tracker_url”). Be careful with the ,,category” value: use here only the names that are
visible on the category list (in the Add-ons tab). If you use anything that is not there — your add-on will be only
visible in the All category.

This plugin will expose our main() method as a new Blender command. To make it possible, we have to
“embed” this procedure into a simple operator class (Figure 4.1.2):

class OBJECT OT Boolean (bpy.types.Operator) :

e A= - Here you determine the name of this operator for the
bl idname = "object.boolean': Blender API: bpy.ops.object.boolean(). (Lower case!)

bl_label = {"Boolean’s
- '¥|GUI command name (for the menu, or a button) |

bl description = ‘"Performs selected Boolean operation on actve object'

Figure 4.1.2 The operator class, “wrapped around” the main() procedure.

| named this class according the API guidelines: OBJECT_OT_Boolean. Each new operator you define must
inherit the abstract bpy.types.Operator class. Otherwise, it will not work properly.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

https://docs.blender.org/api/master/info_best_practice.html

Chapter 4 Converting API Script into Blender Add-On 79

The operator must have two class fields: bl_idname and bl_label (Figure 4.1.2). | also suggest setting another:
bl_description. (If it is missing, Blender displays in the command tooltip the docstring comment you have
placed below the class header). At the beginning, our class contains a single method, with a strictly specified
name and parameter list: execute(self, context). Inside it | placed the call to the main() function, still passing
the fixed ‘DIFFERENCE’ in the op argument (just for the tests). We will handle the result of this function later.

To register in Blender a class (or classes) from your module, you must add to the script two special functions,
responsible for this operation. This code usually looks always the same: first, import from the bpy.utils module
methods that register/unregister an API class. Then use them in your script, in the two methods named
register() and unregister() (Figure 4.1.3):

Remaining script code
Import from bpy.utils these two

/_ procedures

from bpy.utils import register class, unregister class

def register|():

; register class (OBJECT OT Boolean) <«——|The required code that registers add-on class (or
: - - = 1 classes) for the Blender API

@ef unregister () :
unregister class(OBJECT OT Boolean) |

! 1 | added these lines as a precaution (during the

3 / add-on initialization, the name of actual module

if name ' main_ ': 3 — __name__ —isnever =‘__main__")

register ()

Figure 4.1.3 Registering the Blender API class from this script

e Every Blender add-on must implement two procedures named register() and unregister(). They have no
parameters and return nothing, as in Figure 4.1.3.

Let's check how does such modified script work. Make sure, that the PyDev debug server is active. Prepare a
test environment in Blender, then press the Run Script button (Figure 4.1.4):

%+ ‘W Object Mode v view Sele Add Object Ia, Global v 2+) G~

Select the objects

Format Templates E v Run.py LD E x i Register Run Script

Autocomplete lcon Viewer

Click Run Script

Figure 4.1.4 Launching our add-on in the debugger.

Copyright Witold Jaworski, 2011-2019.

80 Creating the Blender Add-On

It seems that the execution of this script was completed without any error. However, there is no hole in object
Cube! What is going on? Add a breakpoint to the execute() method, and run this script again. Nothing happens,
and the code execution has not stopped at this breakpoint (Figure 4.1.5):

- m i T | «——|It seems that the script PyvDev Debug
- execution is completed... '
35 Debug &3 |

4 5% Debug Server [Python Server]

4 (7 unknown

& MainThread - pid_11616_id_892243179992 «—|-- because the Python call stack is empty!
However, debug server is still active and

ready to start a new Blender debug session

g Debug Server

[F] *ohject_booleans 3 Console Problems

... but the execute() method has
,, / not been called, yet!
= i def execmte(s=I1f, context): |

. even though | set
the breakpoint here!

Figure 4.1.5 The state of the debugger after running the add-on script

Actually the main script code does not call the main() procedure. It just registers a new Blender command
(operator), under the name that you have assigned to the bl_name field. In our case this is ,,object.boolean”
(see page 78, Figure 4.1.2). Check in the Python console, whether the bpy.ops.object.boolean method exists
(Figure 4.1.6):

w Console Autocorplete lcon Wiewer

== |:|F|:!||' LOps. 0 b '| ect.boolean Enter the operator name ...

bpy.ops.object.boolean ()
[ere ... in response, Python displays its “declaration”

Figure 4.1.6 Checking results of the add-on registration

Now you can add this new operator to a Blender menu or a panel button. We will deal with the GUI integration
subject in the next section of this chapter. For now, just call this command “manually” — from the Python
Console (Figure 4.1.7):

Console Autocomplete lcan Yiewer

IS.Dh1ECt.hDﬂ1&Eﬂ

|ZI'iE!C't-.|:IIIIIII-|.E!E|I'| 0 This time type the operator name as a
: Python method — with the ,,()” at the end

- bpy.ops.object boolean ()

Figure 4.1.7 Call the operator...

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 81

This time the Blender window has become locked, and the PyDev debugger is activated. It is waiting at the
breakpoint we have placed in the execute() method (Figure 4.1.8):

) ~iw | I N T Quick Access 22t | = PyDev

15 Debug i3 | = 0 ariables €4 Expressions 53 = 0
4 {2 unknown e =] | Lr =
4 of MainThread - pid_11616_id_89224817%% Name '

execute [chject_booleans.py:95] n add -
__call_[ops.py:200] o AEW EXPreEsSion
<module> [<blender_consoclefigt:l]

runcode [code,py:90]

We can start tracking the

runsource [code.py:74] code from this point!

push [code.py:238]

execute [console_python.py:168]

[F] “object_booleans % | B Console [f Problem = O

i = def exeonte (s=1f, con

. main('DIFFERENCE ')

Figure 4.1.8 ...and the debugger will stop its execution at your breakpoint

We have simulated here how Blender invoke our operator. When you call the bpy.ops.object.boolean() meth-
od (usually from a menu or a panel button), Blender will create a new instance of the OBJECT_OT_Boolean
class. Blender uses this object just to invoke its execute() method. After this, the instance of this API class is
immediately released (discarded). Such a “method of cooperation” (,do not call us, we will call you”) is typical for
the all event-driven graphical environments.

By the way: note the arguments of this procedure, exposed in the Variables pane. Expand the context parame-
ter to see what kind of information you can get from this object (Figure 4.1.9):

(%)= Variables 5% | €2 Expressions

Marne Value
» @ Globals Global variables
4 @ context Context: <bpy_struct, Context at (x000000CFBADOB4BE=
» @ active_base ObjectBase: <bpy_struct, ObjectBase at (eD00000CFC44EICEE>
= active_bone MoneType: Mone
= active_gpencil_frame MoneType: Mone
= active_gpencil_layer MoneType: None
. @ active_object Object: <bpy_struct, Object("Cube")> < |In this mode, the context contains
””” not only the reference to the
I e B o e active_object, but also two other
= edit_chject MoneType: Mone < fields — edit_object and object.
L0 ® ediablebases sclass list>: [bpy.datascenes] Scenel. UbjectBase, bpy.data.sfenesl..
I
,, N
- @ layer_collection LayerCollection: <bpy_struct, LayerCollection("Additional objegts")>
= mode str: QBJECT |
- @ ohject Object: <bpy_struct, Object("Cube" > €= === === === - !

Figure 4.1.9 Previewing the context of this call

The context structure may contain different fields for different Blender windows. Examine it, because some-
times you can discover something interesting. For example — what is the difference between the object and
edit_object fields? Unfortunately, you still can find nothing about them on the Blender API pages.

Copyright Witold Jaworski, 2011-2019.

http://www.blender.org/documentation/250PythonDoc/contents.html

82

Creating the Blender Add-On

Let's examine in the Variables pane the self object. Note that the OBJECT_OT_Boolean class has a different

base class, here. It also has a different value in the bl_idname field (Figure 4.1.10):

(%)= Variables 57 | 69" Expressions

Mame Value
: @ Globals Glokal variables
- @ context Context: <bpy_struct, Context at C000000CFBADOB4BE
a4 @ self OBIECT_OT_Boolean: <bpy_struct, QBIECT OT I;:u:n:ulAear1{"OBJECT_OT_I:IDDIean"]}

= bl_description str: Perform a Boolean operation on active object
° blidname str.(OBJECT_OT_boolean '« [Noto a different value of the bl_idname field.
= bl_label str: Boolean It repeats in in the base class name

- @ bl_options set: set()

- @ bl_rna OBJECT_OT_Boolean: <bpy_struct, Struct{"OBIECT_OT_boolean")=
= bl_translation_context str Operator
= bl_undo_group str:
= has_reports bool: False

> @ is_repeat bpy_func: <bpy_func OBIECT_OT_boclean.is_repeat()=
= layout MoneType: Mone

. i@ macros bpy_prop_collection: <bpy_cellection[0], OBIECT_OT_boclean.macros=>
= name str: Boclean

> @ options OperatorOptions: <bpy_struct, OperatorOptions at CxD00000CFBC256B98 >

- @ properties OBIECT_OT_boolean: <bpy_struct, OBIECT_OT_boolean at (e000000CFC43FE628>

- @ report bpy_func: <bpy_func OBIECT_OT_boolean.report()»

- @ ra_type OBJECT_OT_boolean: <bpy_struct, Struct{"OBIECT_OT_boolean")=

Figure 4.1.10 The content of the operator class (self)

Well, this is normal: Blender API modified this class “on the fly”. It seems that Blender used the bl_idname val-
ue (,,object.boolean”) to name the new base class of this operator, named OBJECT_OT_boolean. (The
,object” is in the uppercase, and the dot (,.”) was replaced with ,_OT_"). When you examine the content of the
bpy.types namespace (typing dir(bpy.types) in the Python Console, for example), you will see plenty of un-
documented classes! Their names always contain ,_ OT ", , MT_”, or , PT_”. They are the operators, menus

and panels created by the internal Blender GUI scripts.

By the way: look at the current state of the Python
script stack (Figure 4.1.11). Compare it with the stack
that is shown in Figure 3.4.7 (page 55) or in Figure
3.4.9 (page 56).

At the bottom of the stack, you can see the functions
of the Python Console (it seems that a large part of
its code is also written in Python). Then there is a
single line from a ,<blender console>" module. (PyD-
ev converted by a mistake the “<>” characters in its
name into “<>”) This is my call of the operator
object.boolean() that | typed in the console. As you
can see, it called a method from the ops.py Blender
module, which in turn created this instance of our
OBJECT_OT_Boolean class and called its
execute() method.

Programming Add-Ons for Blender 2.8 — version 2.0

%5 Debug

a5 Debug Server [Python Server)
4 (7 unknown

&2

VEE

ICaII to execute() |

4 o MainThread™~ pid_11616_id_852248175992

execute [object_booleans.py:95] |

p| Debug Server

call [ops.py:200]
<module= [&It;blE:l_er_console>ﬂ]
g

runcode [code. py:
runsource [code.py: 74]

push [code.py:238]

Line that | typed
in the console

execute [console_python.py:168]

execute [console.py:35]

Python Console internal
methods

Figure 4.1.11 The stack of the operator called from the console

www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 83

When you finish the last step of the execute() function (Step Over —) PyDev can ask you about the source

file for the line typed in the console (Figure 4.1.12). Ignore this request, clicking Cancel:

< scripts v addon

Organize = Mew folder

| Documents
4. Downloads
Jf Music
=| Pictures
Videos
iy SYSTEM (C)
— LENOVO (D:)

v G

Search addons -l

PyDev asks for the source code of the line
that | typed in the Python Console

LraLleE TTTULITTEL

MName

2019-05-15 15:14
2015-01-16 18:34
2015-

2017-0

2015-09

. _pycache__
L
l.__;f' io_mesh_uv_svg.py

I.__Ef' mesh_vertex_tools.py
I.__Ef' object_add_parent.py
l.__?f object_intersection.py

File name: |

|Ignore this request | ?
v| *.py \ 7

Figure 4.1.12 PyDev request that may occur when you leave the .execute() method using Step Over command

Now | will show you the behavior of the PyDev debugger in the case of a runtime error in the add-on. When you
leave the execute() method, the highlight disappears from the current line (Figure 4.1.13):

) v s |k | DR Tl
%5 Debug i3 |
4 ,fi" Debug Server [Python Server)
4 (5 unknown

4 o MainThread - pid_11616_id_B85224817595,

- Quick Access w | ~ PyDev

... the script execution is not finished,
yet: you can see the global variables:

Valu

~
Gluha;;ariahles

@ Globals

_ 1% > @ C Context: <bpy_struct, Co

|f <module> [&It;blender_console&gf;: . @ Color type: <class ‘Color'>

= runcede [code.py:90] : > @ D BlendData: =bpy_struct, |

= T,

- run§|:|_l_|rc».=.:[c1:|d_».=::p_}r..4] ; W > @ Euler type: <class 'Euler'= W
£ > £ >
[F] *object_booleans &3 Console Problems = B

bl idname = "ocbject.boolean"

bl label = "Boolean"

bl description = "Perform 3 Boolean opsration on gctive object™

main ("DIFFERENCE ")

RuntimeError: class OBJECT_OT boolean, function execute:

e

= def exeonte(s=slf, context):

|The highlight of the current line has disappeared

x

—
incompatible return value , , Function.result expected a set, not a NnneTypi

location: C:\Program Files‘Blender’2.80\scriptsimodulesibpyhops.py:200

location: C:\Program Files‘Blender2.80\scriptsimodules\bpyops.py:200

In the Blender console (Window->Toggle
Console) you can see the error message

Figure 4.1.13 The state of the debugger in the case of a runtime error

In the same time the debugger prints a message in the console, providing the file name and the line number
where the runtime error has occurred. Despite this, the script execution is not completed, yet. In the Debug
panel you still can see the contents of the stack. In the Variables panel you can check the current status of the
global variables. However, the more important local variables are already removed from the stack.

Copyright Witold Jaworski, 2011-2019.

84 Creating the Blender Add-On

In such a case, if you want to terminate the script execution - use the Resume command (). Then you will

see in the console the standard traceback information (Figure 4.1.14):

lcan Yiewer

This is the same message that was
printed before the script terminated

Figure 4.1.14 The full information about the runtime exception

e When you invoke an operator from the Python Console, the eventual error information will appear below
your call, as in Figure 4.1.14. When you invoke it form a Blender GUI control — a menu or a button — the
error message will appear in the Blender System Console’.

In the error message shown in Figure 4.1.14 Blender writes that it expects from the execute() function a (Py-
thon) set instead of the None value. Indeed, in a hurry while writing this code | have forgotten completely that
the execute() function must return one of the enumeration values, declared in the API. Usually it returns a sin-
gle-element set that contains a 'FINISHED' or ‘CANCELLED’ string. (You can find this enumeration in the base
class declaration: bpy.types.Operator, in bpy.pypredef). OK, so let's fix this script right now (Figure 4.1.15):

[5 ,il v [ﬁ \\9\ E||:| E| I :{E‘i ':_I.Iil:k Access . %\ | rg P'_l,l’DE‘l.l’ # Debug
35 Debug &2 | ¥ = B ix=\Vanables 33 Expressions = 0O
4 %% Debug Server [Python Server] =k E -

4 {7 unknown

p8 MainThread - pid_8144 id_303683834152
g Debug Server

[F] object_booleans 52 | B Conscle [® Problems = O

“'class OBJECT OT Boolean (bpy.types.Operator):

Function execute() must return a
set containing one of the strictly
defined text keywords

Figure 4.1.15 A quick fix of the code — directly in the Debug perspective

Then just save this modified script on the disk.

' System Console is an auxiliary (diagnostic) Blender window (i.e. another OS window) which is available for the current Blender session.
You can turn its visibility on/off using the Windows >Toggle System Console command. In Blender 2.8 you cannot close this window using
the standard [x] button. (In the previous Blender versions when you inadvertently clicked this button, you quit Blender).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 85

When you save the script, PyDev also updates the script code that is currently loaded in Blender. You can see
information about these updates in the Eclipse and Blender system console (Figure 4.1.16):

pydev debugger: 5tart reloading module: “object_booleans™ ...
pydev debugger: Updated function code: <function OBJECT_OT_Boolean.execute at Dx000000754AF2?4AES>
pydev debugger: reload finished

Figure 4.1.16 Information about automatic updates of the script code that is actually loaded in Blender

Regardless of this you can still click the Run Script button if you want to unregister/register the add-on.

When the script code is updated, invoke the object.boolean() operator again (Figure 4.1.17):

1. If you are not sure if PyDev
updated the script code, click
Run Script to update it manually

rrnat Templates E w Run.py = 2 = Register Fun Script

Autocomplete

: 2.1 ke th
|:|t|:|ng_"t bonolean I: :I agari]r\]lo e the Operator

The result — this
time without errors.

Figure 4.1.17 Another test of the fixed script

As you can see, after this minor code correction our operator works properly.

If you click the Step Over () command over the last line of an add-on “public” method, like execute() — the

debugger will step to an internal Blender module named ops.py (Figure 4.1.18):

{xDebug [Flbpy [F ops 2
: BPyCp=sSubModOp. view laver update (context)

if args:
: C dict, C exec, C undo = BPyOpsSubModCp. parse args(args)
ret = op_call(sslf.idname py(), C dict, kw

-

Note that the previous error

: else: occurred in this line (200)
\ret = op call(self.idname pv(), None, kw)
P | if 'FINISHED' in ret and context.window manager == W!

BPFyCp=2SubModOp. view laver update (context)

Figure 4.1.18 The internal module ops.py, opened after execution of the last script line

This module invoked the execute() function from our script (see Figure 4.1.11, page 82). In such a case just
Resume () this execution, letting Blender to perform all closing steps.

Copyright Witold Jaworski, 2011-2019.

86 Creating the Blender Add-On

Finally let's make a small but important modification to function main(): instead of the “static” bpy.context ob-
ject, use the context which Blender passes as the parameter of the execute() function. They can be different in
certain cases! For example — Blender API documentation allows for invoking operators with so-called overridden
context. That's why | added to main() another argument, named cntx (Figure 4.1.19):

def main (op, apply objects=True, cntx=None) :
""" Performs a Boolean operation on th®& active object, using the other

selected objects as the 'tools'
Arguments: e
Qop (Enum): a Boolean operatiog;’f'UNION', "INTERSECT', 'DIFFERENCE'}

|Additiona|, optional argument

@returns (list): one or two message parts: [<flag>, Optional details]

. By default, cntx refers
[e it A& to the “static” context

selected = list{cntx.iselected objects)
active = icntx.pbject
if active 1in selected: selected.remove (active)

Remaining code

Figure 4.1.19 Modification of function main() — adding optional cntx argument

I modified just the few first lines of this function. Then in the operator class | passed in the cntx argument the
context which function execute() receives from Blender (Figure 4.1.20):

class OBJECT_ OT Boolean (bpy.types.Operator) :
""'"Performs a Boolean operation on the active object '

r

bl idname = "object.boolean"
bl label = "Boolean"
bl description = "Performs a Boolean operation on active object"

|Passing the actual context object

def execute(self, context):

return {'FINISHED'}

Figure 4.1.20 Modification of function execute() — passing the current context object to function main()

In next section | will add this operator to the Object menu.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

https://docs.blender.org/api/master/bpy.ops.html

Chapter 4 Converting API Script into Blender Add-On 87

Summary

e Each add-on must contain the bl_info structure (page 78). This is the ,nameplate”, used by Blender to
display information about this plugin in the Blender Preferences:Add-Ons tab;

e You can convert a procedure that changes Blender data (like our main()) into Blender operator. It involves
declaration of a class that derives from bpy.types.Operator. Place the call to the data-updating procedure
inside the execute() method of this new class (page 78);

e Each add-on must implement the register() and unregister() script methods (page 79);

e When you run the add-on script, it just registers its presence in Blender API (page 80). You still have to
invoke its operator — for example, using the Python Console (pages 80 - 81). In response to this call,
Blender creates a new instance of the operator class, an invokes its execute() method;

e In the case of an add-on, the Run Script button re-registers the latest version of the script. (It calls the
unregister() method for the old version, and then the register() method from the new one — see pages
85, 160);

e When you have modified and saved the add-on file during a debug session — PyDev will update it also in
Blender. You can see the messages about it in the Eclipse and Blender system console' (page 85). When
they state that the code has been successfully updated — you do not need to reload this add-on “manually”,
using the Run Script button;

e In case of script runtime error (when a runtime exception has been thrown), PyDev debugger breaks the
execution (page 83). In this moment you can examine the state of the global Python variables. You can al-
so check the error message in the Blender system console. The same text will be displayed in the Eclipse
and Blender console when you terminate this script using the Resume command (page 84);

e The information about the environment of the called operator — current selection, active object, etc. — is
passed to the execute() function in the context argument (page 81);

"1 mean here the Blender System Console window. Do not confuse it with the Python Console! It is useful to make this window visible
(Window -Toggle System Console) before running an API script or an add-on. It displays various diagnostic output (in particular: the output
from the print() statements in your script). This is often very helpful, since the main Blender window is “frozen” until the script terminates.

Copyright Witold Jaworski, 2011-2019.

88 Creating the Blender Add-On

4.2 Adding operator command to a Blender menu

As you probably noticed in previous section, Blender API requires your operator class to implement strictly de-
fined methods. This is a kind of a "contract" between your script and the Blender core system. You agree to
implement required functions in your class. Blender agrees to call them in the strictly defined circumstances.

In the object-oriented programming such a list of contracted functions and properties is called "interface". To
help you a little in its implementation, Blender API delivers the base class for derived operators, named
bpy.types.Operator’. In the object-oriented programming jargon, Operator is so-called "abstract class". It just
provides the default, empty implementations of all the methods required by the interface. Our operator class
inherits this default content from its base (bpy.types.Operator). That's why it is possible to implement (override,
in fact) in the OBJECT_OT_Boolean just these Operator methods, which are specific for the derived class.

So far, | overrode the single Operator.execute() method. It calls the main() function but ignores the eventual
error message that it receives in the result of this call. | did it because in certain situations Blender can repeat-
edly call this method, for the same context but with different input parameters. (You will see such a case in the
next section). Therefore, it is not good place for the result validation, and certainly not for displaying eventual
messages. You better implement such a communication in another method of the Operator interface: invoke()
(Figure 4.2.1):

gt g | altered these constants (they are returned in the first
}INPUT—ER% - EZ?RORf INVALID CONTEXT 4/— element of the main() result list). Now they conform
EERROR = ERROR i the keywords required in the type argument of the
}WARNING = 'WARNING' i Operator.report() method, used to display messages
SUCCESS = 'OK' !

Remaining program code

class OBJECT_ OT Boolean (bpy.types.Operator) :
"'"'"pPerforms a 'destructive' Boolean operation on the active object'''

bl idname = "object.boolean"
bl label = "Boolean"
bl description = "Perform a Boolean operation on active object"”

Blender can call function invoke(), when you click a menu
def execute (self, context) :4~ item or a button. However, after this first call, in certain
main ('DIFFERENCE', cntx context) situations it also can call execute().

return {'FINISHED'}

| do not use the event argument in this script. It is

777 intended for the modal operations.

def invoke (self, context, event):
result = main('DIFFERENCE', cntx = context)
if result[0] == SUCCESS:

return {'FINISHED'} |Method report() displays a message on the screen (i

a “box’)

else:

self.report (type = {result[0]}, message = result[l])
return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

DRV = N

Figure 4.2.1 Validation and user communication — in the invoke() method

Function invoke() returns the same codes as the codes returned by the execute() function. In this
implementation it checks the result returned by function main(). When main() signalizes a success — it returns
‘FINISHED’ (even if a warning has occured). In the case of errors it returns '"CANCELLED'. For displaying
eventual messages | use API report() function. (I adjusted the result constansts to conform its type argument).

" In addition to the Operator interface, Blender API provides two other interfaces (abstract classes): Menu and Panel. Obviously, they are
intended for corresponding elements of the user interface. You can find their declarations in the bpy.types module, as you can see these
base classes in the PyDev autocompletion suggestions.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 89

Note that the invoke() method also receives another argument: event. This object contains information about
the user interface “event” — mouse movement or keyboard key state change. It allows creating advanced oper-
ators (see examples in the Operator class documentation). In this code | will never use the event object.

Writing this script, | assumed that our operator will be invoked in the Object Mode. In fact, we are going to ap-
pend it to the mesh Object menu, which is only available in this mode. Yet you never know whether someone in
the future will add your operator to another menu or panel, and in which Blender mode it will be invoked. There-
fore, it is a good idea to implement in your operator class a function named poll() (Figure 4.2.2):

class OBJECT OT Boolean (bpy.types.Operator) :

. Blender uses the poll() function to check, if this
bl idname = operator is available for the current context. When
bl label = it returns False — its control is grayed out
bl description A&

‘@classmethod ——o—o— + |You must declare poll() as the class method

‘def poll (cls, context): i |(instead of the typical instance method)
return (context.mode == 'OBJECT')

”””””””””””””””””””””””””””””””””””””” Function returns True when we are in the
execute (self, context): Object Mode. Thus, the Boolean command will
main (, cntx = context) be only available in this mode,

{ }
Figure 4.2.2 The basic ,,availability test” — implementation of the pol/() function

Blender invokes this function to find out if this command is available "in the current situation". You can examine
in your poll() implementation the context object passed as one of its arguments. Function poll() returns True,
when the operator is available for the given context. Otherwise, it returns False.

This is the place for ,general” tests, such as the one in the illustration above. This poll() function returns True
when Blender is in the Object Mode. (This is the meaning of the ‘OBJECT’ keyword). If it is in other mode — the
armature editing, for example — field context.mode would return a different value.

I will not check there for more detailed conditions, for example - the types of the selected objects. They are too
specific. It would be a very strange command, available only when you have selected two or more mesh ob-
jects! Half of the users would have no luck to see it in this state, and they would conclude that this add-on does
not work. It is better to make the Boolean command available in the Object menu all the time. If the user invokes
it without any objects selected, it will display an appropriate message. In this way she/he will learn “by example”
how to use this command next time.

e Do not use in the poll() function any method that changes the Blender state (for example the current mode,
or the scene data). Any attempt to invoke such an operation here will cause a script runtime error.

Note the @classmethod expression before the header of the poll() function. (In the programmer’s jargon, this is
called “decorator”). It declares that this is a class method — to run it, you do not need an object instance’.

e Always add the @classmethod “decorator” before the header of the poll() method! If you omit it, Blender
will never call this function.

" Probably it improves the performance of Blender environment. The poll() methods are implemented by all GUI controls, and they are
called every time Blender refreshes its screen. (The poll() functions of all visible controls are called when the user does anything — pulls
down a menu, clicks a button, etc.). If poll() was an instance method, like execute(), Blender would have to create instances of GUI control
objects just to call their poll() methods, and then discard them immediately. | suppose that it would significantly slow down Blender fps rate.
For calling a class method you do not need to create its instance (an object), therefore this operation requires less CPU time.

Copyright Witold Jaworski, 2011-2019.

https://docs.blender.org/api/master/bpy.types.Operator.html?highlight=event

90 Creating the Blender Add-On

All right, our enhanced operator is ready to use. Yet how to add it to the standard Blender Object pull-down
menu (Figure 4.2.3)?

Text Edit Format Templates

W Chject Mode » Wiew Sele Add Object

Transform

Set Crigin

Boolean command to
this section

Airror

Clear

[P B O g T -

Duplicate Objects

Duplicate Linked
Figure 4.2.3 Object menu

The standard Blender menu are created in the same way as our add-on: using API functions and classes. To
add an item to menu Object, you must find the name of its API class. In such a case, the Python Tooltip is an
invaluable tool. Just hover your mouse for a while over the menu label (Figure 4.2.4):

W Object Mode v Wiew Sele Add [Object

3

This is the name of the Python class
that implements the Object menu

Figure 4.2.4 Identification of the Object menu class name

When | know the menu class name, | can write the code that will add our operator to this menu (Figure 4.2.5):

Auxiliary function: it is defined in the main script code, but then added to the class
that implements Object menu (that's why its first argument is named self)

. 2

idef menu_draw (self, context): /_ This line tells Blender to use

: self.layout.operator_context = 'INVOKE REGION WIN'™ the invoke() method instead of
! self.layout.operator (OBJECT OT Boolean.bl idname) | the default execute()

def register():
register class (OBJECT OT Boolean)

77 ~——|Adds and removes

defunreglster()/ Boolean operator
.bpy.types.VIEW3D MT object.remove(menu draw) ... | from the menu
unregister class (OBJECT OT Boolean)

Figure 4.2.5 Appending the operator command to the Object menu

Every pull-down menu class in Blender is based on class bpy.types.Menu. In procedure register() | am calling
the prepend() method of the Object menu class (VIEW3D_MT_object). It adds the custom drawing method
menu_draw() at the beginning of this menu. In procedure unregister() | am reverting this step.

What does the menu_draw() function contain? Its argument self is the Object menu class. Field self.layout
returns a bpy.types.UlLayout object. It represents the menu “surface” (others also call it “canvas”). The
operator() method places a new command in this layout. This command is identified by its id (field b/_name).
However, before this step | alter the layout operator_context field, setting it to INVOKE_REGION_WIN’. This
tells Blender to call the invoke() method of the operator, so the user will see eventual error/warning messages.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 91

If I used method Menu.append() in the register() procedure — the new item would appear at the end of the
Object menu. In Blender API you cannot place a new item in the middle of menu.

e To identify the class name of a popup menu (like Context Menu, opened by D click), you have to find its
class in the source Blender file. The whole Blender GUI is written in Python, and you can find its scripts in
subfolder scripts\startup\bl_ui. (On my computer this is C:\Program Files\Blender\2.80\scripts\startup\bl_ui).
Files named space <window type>.py contain menu API classes for the corresponding Blender window.
Thus, you can find the menus of the View 3D pane in file space view3d.py. Open this file in a text editor
and try to find the name of a specific command from the menu you are searching for. (Sometimes you will
find nothing, if the menu uses the default name of this operator. In this case try searching for another item).

Let’s check if this code works: reload the script (using the Run Script button). It executes the updated register()
method, and in the result you can see our command at the top of the Object menu (Figure 4.2.6):

‘W Object Mode ~ view Sele Add Object e ;13'||:||:|-E|| v

Set Crigin Perform a Boolean operation on active object.
Mirrar

Clear
Apply
Snap

Cuplicate Objects
Cuplicate Linked

1oin

Figure 4.2.6 Our command in the Object menu

Let’s do another test: invoke the Boolean command from this menu when no object is selected. Figure 4.2.7
shows the message displayed by the report() method, called by our operator (as intended).

Report: Inwalid Context Error

A\ this operation requires at least two objects

The result of the report()
method (see Figure 4.2.1)

Figure 4.2.7 The result of invoking the Boolean command without any selected object

Simultaneously, Blender displays a red line with this message in the Info window. (But who, among the ordinary
users, looks there?). The warnings are displayed in the Info window in orange.

Copyright Witold Jaworski, 2011-2019.

92 Creating the Blender Add-On

So far, our command performed the Boolean difference operation, because it was “hardwired” in its code. Let’s
add a parameter to this operator, providing the user a choice among the three options (Figure 4.2.8):

ff '

ifrom bpy.props import EnumProperty ¢——— The bpy.props module contains the API functions for all
”””””””””””””””””””””””””””””””””” ‘ argument types. For this case | am using an Enumeration
class OBJECT OT Boolean (bpy.types.Operator) :
'"'"'"Performs a 'destructive' Boolean operation on the active object
Arguments:
Qop (Enum): operation type, in ['DIFFERENCE', 'UNION', 'INTERSECT']

INew property (argument) of this operator:

an enumeration, named op
[

default='DIFFERENCE'#—___(Setting the default value

gop EnumProperty (items = v v v

3 Enumeration ("DIFFERENCE', "Difference", "Boolean difference"),

! elements ("UNION', "Union'", "Boolean union'),

3 ("INTERSECT', "Intersection', "Boolean intersection'"),'
§ 1, |
' |Always place name = "Operation", 3
icdon(?)hem! description = "Boolean operation”,

@classmethod
def poll(cls, context):
return (context.mode == 'OBJECT'")

def execute(self, context):
,,,,,,,,,,,,, cntx = context)
return { 'FINISHEDT

Here we use the current
value of the op argument

def invoke (self, context, nt) :

result = main{ggiflgp) cntx = context)
if result[0] == SUCCESS:
return {'FINISHED'}
else:
self.report (type = {result[0]}, message = result[l])
return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.2.8 Declaration of an operator property (operator parameter)

Operator argument, also referred as “property”, is declared as an ordinary class field, assigned by the colon (*:”)
to one of the API *Property functions. You can find these functions — BoolProperty(), FloatProperty(),
IntProperty(), StringProperty(), ... — in the bpy.props module. (In this module you can find a *Property func-
tion for each of the basic API data types). The op parameter is an enumeration of the three available Boolean
operations, thus | used here the EnumProperty function.

The most important part of this new code is the definition of the op enumeration. It is passed to the
EnumProperty() function in its arguments (Figure 4.2.8). In the first argument — items — | am passing the list
that declares enumeration items. Each element of this list is a tuple, containing: the value (e.g. ‘DIFFERENCE’),
name (displayed in the GUI), and description (for the tooltips). From the other optional arguments of
EnumProperty(), | am also using default: it determines the default value of the op operator parameter.

e The tuples of the items list can also contain two additional (optional) values: the icon name (a string) and
the option id (a number). | will show them in one of the further sections.

In the further code, in particular in the object methods, you can use the op field as any other field of this class.
In Figure 4.2.8 | am using it in the invoke() and execute() methods, passing its value as the first argument of
the main() function.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 93

Load this new version of the code by clicking the Run Script button, forcing the re-registration of this add-on.
Then, when you type the operator name in Python Console, you can see its parameter (Figure 4.2.9)

Console Autocomplete lcon Wiewer

» bpy.ops.object.boolean

Epy.npa.Dh]Ect.thlEEn{Dp='DIFFEHENEE'?

An argument: op(eration)

Figure 4.2.9 New argument of the object.boolean operator
You can invoke it from this console, for example typing bpy.ops.object.boolean(op="UNION’).
What’s more, you can use such an enumeration for an easy conversion of a single menu command (operator

item) into a submenu. Each item in this submenu will invoke the same operator with different parameter value.
Just change the single line in menu_draw(), as in Figure 4.2.10:

def menu draw(self, context): |Th|s method creates a submenu for the items of this enumeration |

selleayout.operator context/= 'INVOKE REGION WIN'

gty 5y S AP

self.layout.operator_menu_enum(OBJECT_OT_Boolean.bl idname, property="op")

,,,

Figure 4.2.10 Adding a submenu for operator options

Replace the layout.operator() method with layout.operator_menu_enum(), and pass the name of the
enumeration parameter (“op”) in the property argument. Then reload this script. Now, in place of a single
Object 2Boolean command you will see a submenu with all three Boolean operations (Figure 4.2.11):

Add | Object I._, Global «
Difference
Union

Intersection

3

Perform a Boolean operation on active object.

Each of these commands
invokes the Boolean operator
Duplicate Linked with different op parameter

Duplicate Objects

1ain

Figure 4.2.11 The Object->Boolean submenu

When you check the items in this menu using Python tooltips, you will see that each of them invokes the
Boolean operator with different value of the op parameter.

After this modification, our add-on became a useful tool. In the next section | will introduce an enhancement: the
possibility of a dynamic interaction with the user.

Copyright Witold Jaworski, 2011-2019.

94 Creating the Blender Add-On

Summary

e Apart the basic execute() method, your operator class should implement another function: invoke() (page
88). Keep the execute() method “mute” and implement the user communication in invoke(). Use the
Operator.report() method for displaying the user warning or error messages;

e To add your operator to a Blender menu, you must know the API class of this menu. Use Python tooltips to
identify this name (page 90). It is more difficult for the popup menus (like the Context Menu). You have to
search for their names in the Blender source files. They are named space <window name>.py and located
in the <Blender version>\scripts\startup\bl_ui directory (page 91)’;

e To add an operator to Blender menu, define a menu_draw() procedure that “draws” it on the menu “sur-
face” (layout). Then pass this procedure to the Menu.perpend() or .append() methods (page 90);

e When the user clicks your operator label from a menu, Blender by default calls the execute() method of
your operator class. Usually you will want it to use the invoke() method instead, because it can display
eventual messages. To do it, in the menu_draw() method set the layout operator_context field to
‘INVOKE_REGION_WIN’ keyword before drawing your operator (page 90);

e You can implement in your operator the optional poll() method. Blender uses this function to check, wheth-
er in the current context the command is still available (for example — active in the menu). It is intended for
the first, general tests, like the checking the current mode (page 89);

e You can create operator parameter (property) as a class field, using appropriate function from the
bpy.props module (page 92). Operator properties, created in this way, become automatically named ar-
guments of the operator method (from the bpy.ops namespace — see page 93). Then you can use these
fields in your code as any other object field that contains a string/boolean/numeric value;

e You can easily create a submenu from an operator enumeration property (initialized using the
EnumProperty() function - page 93);

" For example — in the scripts\startup\bl_ui\space_view3d.py file you can find that:
e APl class of the Object Context Menu is named VIEW3D_MT_object_context_menu;
e APl class of the Vertex/Edge/Face Context Menu is named VIEW3D_MT_edit_mesh_context_menu;

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 95

4.3 Dynamic interaction with the user

In Blender, it is very simple to implement a dynamic interaction between your operator and the user— at least a
certain, basic scheme of such a cooperation. It allows the user to change continuously the operator parameters
(using mouse, for example), while Blender is updating the result on the screen.

All what you have to do is to override the default operator options (field Operator.bl_options). Assign it a set
containing two values: {'REGISTER’, ‘UNDO’} (Figure 4.3.1):

class OBJECT OT Boolean (bpy.types.Operator):

bl idname =
bl label =
bl description =

bl_options = {'REGISTER', '"UNDO'}e—___ |Add this line (it overrides the default options)

,,

Figure 4.3.1 Overriding the operator options

If you omit any element from this the bl_options set: 'REGISTER', or 'UNDO", you will not obtain the effect,
which is shown in Figure 4.3.2:

When vyou invoke Boolean command,
Blender will show its options in the tool
panel. It appears (initially minimized) in the
lower left corner of the 3D View

When you select from this list
another option — it immediately

changes the result on the screen
Boolean

Cperation SRIffEFERCE

: Union

3 Intersection

Figure 4.3.2 Dynamic change of the operator options

This is the tool options panel for your operator — as in the standard Blender commands.

Copyright Witold Jaworski, 2011-2019.

96 Creating the Blender Add-On

When you invoke our command (let’'s say: Object >Boolean 2Difference), it creates the hole in the plate, as in
the previous trials. However, note that in the lower left corner of the active window Blender has added a bar with
our operator name (Boolean). When you click this bar, you will find the tool option panel. This panel contains the
controls corresponding to all operator parameters (properties). In the case of our script this is just the Boolean
operation type. When you alter the value of any control from the tool options panel, Blender immediately
updates the operator result you can see on the screen. (Of course, if your operator does not perform any time-
consuming calculations). For an operator property that represents a float number (for example: a distance), you
can drag the mouse cursor (holding the |:[down) over corresponding control, dynamically changing the result

in 3D View. Unfortunately, our operator has no such float property (i.e. parameter).
How does Blender get this effect from our srcript? For tracking down such interactive events, printing of a

diagnostic text in the console is better than the debugger window. Place temporary print() statements in both
operator methods: invoke() and execute() (Figure 4.3.3):

def execute(self, context):

iprint ("in execute() : op = '$s'" % self.op)f

main (self.op, cntx = context)
return {'FINISHED'}

Diagnostic messages (they
will appear in the console)

def invoke (self, context, event):

print ("in invoke() : op = '%5'" % self.op)
Lfééﬁif";"méiﬁfééjfféﬁfhéﬁfi"¥"66ﬁfé§i) ”””””
if result[0] == SUCCESS:
return {'FINISHED'}
else:
self.report (type = {result[0]}, message = result[l])
return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.3.3 Adding the diagnostic messages (just for the test)

Reload this new add-on version and invoke the Object 2Boolean >Difference command again (Figure 4.3.4):

IF| object booleans | & Console &2 |1® Problems
[F] obj i

Debug Server -— 1. Invoking the menu command |

Iin invoke() : op = 'DIFFERENCE' 2. Tool panel: changing the operation to Union |
in execute() : op = 'UNICH'<4

in execute() : op = 'INTERSECT'% |3. Tool panel: changing the operation to Intersectionl
in execute() : op = 'DIFFERENCE '<¥|4. Tool panel: changing the operation to Difference |

Figure 4.3.4 Diagnostic messages, displayed when | was altering the tool options

Immediately after this invocation, the first line will appear in the console (Figure 4.3.4). It seems that Blender
has called the invoke() method. Now let’s change the value of Operation field in the Boolean pane. After each
change, we can see that Blender calls the execute() method, using the currently selected op parameter.

It seems that every time | change the value of the tool panel control, Blender calls Undo command, and then
simply invokes the operator again. For this purpose it uses directly its execute() method, calling it with the op
parameter set to the current value of the Operation control.

| think that the roles of the invoke() and execute() procedures in Blender APl can be summarized as follows:

e The invoke() method is called when the operator is executed with the default parameters. The execute()
metod is called when operator is executed for specific parameter values. (In the latter case they are
explicitly passed in the argument list of this call).

The choice of the operator methods called by the GUI can be controlled by certain flags (see page 90).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 97

By default, the tool options pane contains every declared API property of your operator. For example | will add to
our class another field (API property) named modifier. This is a simple True/False flag. If it is set to True, the
operator does not apply the new Boolean modifier, added to the modifier stack (Figure 4.3.5):

class OBJECT OT Boolean (bpy.types.Operator):

This is a simple Yes/No flag,
so | initialized it using function

Remaining code BoolProperty()

modifier : BoolProperty(name = "Keep as modifier"”,
description = "Keep the results as the object modifier",:
default = False }

@classmethod
def poll(cls, context):
return (context.mode == 'OBJECT'")

def execute(self, context):

main (self.op, Lapply_objects = not self.modifier, cntx = context)

return {'FINISHED'}

def invoke (self, context, event):

result = main(self.op,:apply objects = not self.modifier,; cntx = context)
if result[0] == SUCCESS: 7 e ‘

return { 'FINISHED'}
else:

self.report (type = {result[0]}, message = result[l])

return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.3.5 Another property of the operator: (a simple Yes/No flag)

Figure 4.3.6 shows this new control in the tool options panel:

Boolean
- This control represents
Operation Difference w the modifier property

kKeep as rmodifier &

Sometimes the Python “path”
to an API field is too long

Figure 4.3.6 Modified tool options panel

¥

keep the results as the object modifier.

By default, Blender displays the tool option controls in a single column (one under another) in the same order as
they are declared in the operator class. Usually it produces an acceptable visual effect. In the example above,
the Keep as modifier option seems to be shifted rght because it is placed after the pull-down list, which is left-
aligned (as all of the text fields)'.

" If you wish to “take control” over the tool options panel layout of your operator — override the Operator.draw() method. In this procedure
you can implement your own layout of the controls.

Copyright Witold Jaworski, 2011-2019.

98

Creating the Blender Add-On

If you would like, you can also hide a property from the tool options panel. For this purpose pass to the options
set of the property initalizaton function (*Property()) keyword ‘HIDDEN’ (Figure 4.3.7):

modifier : BoolProperty(name = "Keep as modifier",
description = "Keep the results as the object modifier",
default = False,

'options = {'HIDDEN'}, ¢—— ‘HIDDEN’ removes this property
) #end BoolProperty from the tool options pane

Figure 4.3.7 Marking an argument as invisible in the tool options pane

Blender uses settings applied in the last completed operator call as the default values for the next call. Of
course, this rule does not apply to the properties which are set explicitly, as the op argument in the
Object>Boolean submenu. Blender “remembers” these last used values for the timespan of the current
session. When you quit Blender and open it anew, for the first call to your operator it will use the default values
as defined in your code. To force Blender using this declared default value in every operator call, add another
keyword: ‘SKIP_SAVE’ to the options set in the property initialization function.

Summary

To make your command interactive, just add to its operator class following line: bl_options =
{'REGISTER’,’UNDO’}. When you invoke it after this change, you will see in the 3D View the tool options
panel containing the command properties (arguments), presented as the GUI controls. You can alter these
properties using the keyboard or the mouse. The results of these changes are dynamically updated on the
screen (page 96);

When you click the command button or the menu item, Blender calls the invoke() method of the corre-
sponding operator. When you alter any property of this command in the tool options panel, Blender calls
Undo, then the execute() method of this operator (page 96);

The options parameter of the operator property initialization function (*Property()) contains some useful
keywords. To hide a property from the tool options panel, add the ‘HIDDEN’ keyword to this set. To ex-
clude property from applying the last used value as the new default, add the ‘SKIP_SAVE’ keyword to its
options set;

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 99

4.4 Keyboard shortcut and a pie menu

When the add-on is tested and it works properly, you can think about further facilities, like the keyboard shortcut
for your operator. Of course, first you have to determine the key combination for this shortcut.

Blender is known for its dozens (if not hundreds) keyboard shortcuts. Now | must find among them an unused
combination for our command. Frankly speaking, | prefer the rule “the less keys, the better”. Holding down sim-
ultaneously three or four keyboard keys (, , a letter key, and eventually) is more difficult than typing

a single letter key. For the shortcuts, | prefer the keys from the left side of the keyboard, because most of the
users keeps the mouse in their right hand, leaving the left hand free for most of the time. From the other side — if
| was going to assign to my operator a keyboard shortcut “hardcoded” in the script, it had to be a unique (thus:
complex) key combination. In this way | can avoid potential conflicts with other plugins and Blender standard
shortcuts. Most of the add-on authors do it this way. However, | will choose a different approach:

e | will allow the user to determine the keyboard shortcut for the Boolean command. For this purpose, | will
implement a special add-on preferences panel (in the next section of this guide). Such a facility allows me
to propose a simple key combination for the default shortcut.

To determine a suitable, unused key combination | prepared the test environment: in the 3D View window,
Object Mode, | selected a few scene objects. Then | started typing single letter keys on the left side of the key-

board: |§| El El El El, E E, E, El, , , ... checking, what happens. On this occasion | learned about a

few Blender facilities that were unknown for me, like the Quick Favorities menu (under the |§| key), or switching

the active tool variants ((W]):

Quick Favorites

Mo menu items found

Right click on buttons to add them to this menu

Key @: opens a
user configurable
Quick Favorities
menu

| am typing subsequent keys: @ m E .I E
El, E EI EI IZI and checking, what they do

Figure 4.4.1 Searching for an unused kay for the keyboard shortcut

Surprisingly, | have found that the EI EI and EI keys are not (yet) assigned to any command. After this prelimi-

nary elimination, | have to check this short list of free keys in the Blender preferences window.

Copyright Witold Jaworski, 2011-2019.

100 Creating the Blender Add-On

In the preferences window (Edit >Preferences), Keymap tab, | searched for all the shortcuts that use each of
the keys that | selected in the previous step (Figure 4.4.2 shows the results for key |§|):

B

Interface BElender Search in the shortcut keys. .. [EETTTETeT s SRR N =¥ e 0
Themes JoNs

viewport ...every combination that contains E

User Interface

Lights
o - Add Driver Keyboard Ctrl D

Editing . Rermove Driver Ceyboar Ctrl Alt O

Anirnation Cutliner
: - Add Drivers for Selected kevboard Ctrl D
Add-ons

[Celete Drivers for Selected Keyboard Ctrl Alt D
Input Markers

Mawigation - Duplicate Time Marker keyboard

Keymap Dopesheet

Figure 4.4.2 Checking the existing shortcuts that use a given key

| paid special attention to the number and type of the Blender modes that use these shortcuts. Ultimately, | de-
cided to use the El key as the default keyboard shortcut for this operator. It is used just in two modal projection
changes: View 3D Fly Modal and View 3D Walk Modal, thus there will be no conflict. (Shortcuts El and E are

used more often, although in completely different windows and/or modes. However, because of this more fre-
quent use, they could cause more mistakes among the users).

| prepared two auxiliary procedures that register and remove the keyboard shortcut (Figure 4.4.3)

— A global auxiliary list that preserves the registered addon is a special
addon_keymaps = [] shortcuts (while this add-on is active) keyboard configuration
for the plugins

def register_ keymap():
key_config = bpy.context.window _manager.keyconfigs.addon:

o . Auxiliary variables (for a
opeartor_ id = OBJECT_OT_Boolean.bl idname : more readable code)

- | am checking this just in case Use here the name from

if key config: /_ Preferences:Keymap
key map = key config.keymaps.new(name = "Object Mode")
kotkey = key map.keymap items.new(operator id, 'D', 'PRESS')

addon_keymaps. ap}iend ((key_map+ kotkey)) 10 |Shortcut definition

|Add the shortcut to Blender keymap

def unregister keymap () :
key config = bpy.context.window manager.keyconfigs.addon
if key config:
for key map, hotkey in addon keymaps:
key_map_keymap_items_remove(hotkey)4___4Removeﬂmshonmnfmn1andaﬂeymap
addon_ keymaps.clear

2 N [Clear the auxiliary shortcut list |

Figure 4.4.3 Keyboard shortcut registration

These are simple methods without any parameters, because at this moment the shortcut is “hardcoded”. The
register_keymap() method assigns the shortcut key (‘D’) to the Boolean operator and saves the newly created
keymap and hotkey in the auxiliary addon_keymaps list. Method unregister_keymap() removes the shortcut
assigned to this operator and clears the addon_keymaps list.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 101

| placed calls to register_keymap() / unregister_keymap() procedures in the register() / unregister() methods
(Figure 4.4.4):

def register():
register class (OBJECT OT Boolean)
bpy.types.VIEW3D MT object.prepend(menu_draw)

‘register keymap () \
CTTTTTTTTmTmmTTT et Procedures that register/unregister

def unregister(): / keyboard shortcut

iunregister keymap ()1

bpy.types.VIEW3D MT object.remove (menu_ draw)
unregister class (OBJECT OT Boolean)

Figure 4.4.4 Calling the keyboard shortcut registration methods

(Note that unregister() executes the corresponding steps in the reverse order than they are invoked in the
register() method. In this way | am avoiding using an API class that is not yet registered, or just removed).

When you click the Run Script button, this shortcut will appear in Blender Keymap list (Figure 4.4.5):

Switch to the
searching by name + — i. Import. .. i. Export...

Marme O Boolean Type the command name...

...80 now you can see it here!

- EBoolean Keyboard

* Ohject Mode

Figure 4.4.5 Shortcut to the Boolean command

Thus, when in 3D View you select objects Cylinder and Cube, and then type @ you will make a hole:

Boolean

After this, you can switch the
Cperation Difference Boolean operation type in the tool
options panel

kKeep as modifier

Figure 4.4.6 Invoking the Boolean operator using keyboard shortcut

This command was invoked with the default op parameter, so Blender uses here the last used value of this
property. You can switch it later in the tool options panel (Figure 4.4.6).

Copyright Witold Jaworski, 2011-2019.

102 Creating the Blender Add-On

| think that the users would prefer selecting the type of the Boolean operation immediately after pressing the
shortcut key. It could be a classic popup menu offering the three available options. However, in Blender we can
use for the same purpose a more elegant pie menu (as shown in page 37, Figure 3.1.8).

The API class for a pie menu differs just in few details from the implementation of a classic popup/pull down
menu (Figure 4.4.7):

class VIEW3D MT Boolean (bpy.types.Menu)e Base class: Menu (used for both:
""1This pie menu shows Boolean operator options. |Piemenusand classic menus)
Invoked by the hotkey assigned to this add-on
— Blender 2.8 prefers menu names with “_MT_” in the
bl idname = "VIEW3D MT Boolean' middle (To be “on the safe side”, use the class name)

bl label = "Select operation:'g

rror

This prompt is displayed in the center of the pie menu

def d:;aw(self, contex};)ig 77777777 — (_|Displays pie menu |
pie = self.layout.menu pie ()

' pie.operator enum(OBJECT OT Boolean.bl idname, property="op")

x This method automatically generates pie menu items from the

elements of an operator enumeration property

Figure 4.4.7 Implementation of a pie menu that exposes the Boolean operator options

| named this class VIEW3D_MT_Boolean. From the programmer point of view, the only difference in implemen-
tations of a classic menu and a pie menu is in their draw() methods. In this class | begin the draw() method by
calling layout.menu_pie(). It prepares (initially empty) pie menu. Then | allow Blender to generate items for this
menu from the op enumeration property of the Boolean operator.

This new menu will be opened by our keyboard shortcut (instead of the Boolean operator). Thus, | modified the
register_keympa() procedure. In place of the Boolean operator id | placed the name of the special
wm.call_menu_pie operator. It opens the pie menu, which name | assign to its name property (Figure 4.4.8):

def register keymap() :
key config = bpy.context.window manager.keyconfigs.addon

if key config: ETihlise c;;:;rsand opens
key map = key config.keymaps.new(name =_ "Object Modgy) P

hotkey = key map.keymap items.new ('wm.call menu pie', 'D', 'PRESS')

addon_ keymaps.append((key map,hotkey))

The pie menu name is
assigned in a separate line

unregister_keymap() — no changes

def register():

bpy.types.VIEW3D MT object.prepen enu_draw)
register keymap ()

Registering (and unregistering)
def unregister(): of the pie menu class
unregister keymap ()
bpy.types.VIEW3D MT object.remove (mghu_draw)

unregister class (OBJECT OT Boolean)

Figure 4.4.8 Registration of a pie menu

| also added to register() and unregister() methods additional lines that handle registration of the pie menu API
class (VIEW3D_MT_Boolean).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 103

To check, how it works now, reload this script (clicking the Run Script button). Then go to the 3D View window
and press the [p] key (Figure 4.4.9):

When you press E you will see this pie menu
containing all three Boolean operations:
l

Difference

Intersection

Figure 4.4.9 Pie menu (first version)

It looks quite good, but let’s improve its appearance, adding icons to these labels. The simplest way is to choose
corresponding icons from the standard Blender set. Click the Icon Viewer button in the Python Console window
to open its browser (Figure 4.4.10):

v G ole Autocormplete lcan i

lcan %

skl Av d

Figure 4.4.10 Blender icon browser

Unfortunately, the Boolean modifier options are not “iconized” (yet?). After long deliberations | decided to use
the icons intended for the operations on a selection set. | read their identifiers from the field at the upper right
corner of the icon browser window: ‘SELECT_EXTEND’ (Union), ‘SELECT_SUBSTRACT’ (Difference),
‘SELECT_INTERSECT’ (Intersection). | do not think that they are especially pretty, but at least they match the
idea of these three Boolean operations.

Copyright Witold Jaworski, 2011-2019.

104 Creating the Blender Add-On

The most convenient way to add these icons to our implementation is to extend the definitions of the op enu-
meration in the OBJECT_OT_Boolean class (Figure 4.4.11):

class OBJECT OT Boolean (bpy.types.Operator) :
"'"'"pPerforms a 'destructive' Boolean operation on the active object
Arguments:
Qop (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']
@modifier (Bool): add this operation as the object modifier

rr

bl idname = "object.boolean"

bl label = "Boolean"

bl description = "Perform a Boolean operation on active object"

bl options = {'REGISTER', 'UNDO'} In each tuple in this enumeration | added two new values:
icon id (string) and ordinal number (integer)

op : EnumProperty(items = [

("DIFFERENCE', "Difference'", "Boolean difference", E'SELECT_SUBTRACT'E,El— ,

,,,,,,,,,,,,,,,,,,,,,,,,,,,, JEr Sy S

('UNION', "Union", "Boolean union", "SELECT EXTEND',Z2),

Iy
name = "Operation'”,
description = "Boolean operation',
default='DIFFERENCE',
)

Figure 4.4.11 Adding icons to the tuples in the op enumeration

Note that in every tuple of this enumeration the icon id is accompanied by an ordinal number. They are required
by the API — if | added only the icon id, Blender would raise an exception in the register() method.

Let’s reload this script again (Run Script) and type the El key (Figure 4.4.12):

e

Select operation |

' Union

You can see these icons
in every place where the

= op property is used s /
Tl Intersection

™ Difference
' Union

Boolean 'l ntersection

Operation (W Difference Does this “picturesque” style

keep as modifier conform the Blender conventions
for the pull-down menu?

Figure 4.4.12 Results of the “iconized” op enumeration

The icons appeared everywhere — not only in the pie menu, but also in tool option panel and pull-down menu.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 105

Looking at the modified Boolean submenu, | started to wonder if such an “iconic” style conforms the Blender
conventions for pull-down menus? (I could not see any other icons in the neighbor Transform, Set Origin, Mirror,
and other submenus of the Object menu). However, | made a more detailed review of this and other Blender
pull-down menus and concluded that although most of the Object submenu items have no icons, there are some
exceptions. For example — in the Object>Convert To submenu. You can also find more icons in the other pull-
down menus of the 3D View.

Summary

The complex keyboard shortcuts of three or four keyboard keys are inconvenient. Try to use shorter combi-
nations of two, or even a single key;

To assign a keyboard shortcut to your operator, you have to find it first. Start by creating a “short list” of the
most promising, unused key combinations. You can do it by typing all the possible keys in a test Blender
environment (page 99). (This environment should closely resemble the real environment where the users
will apply your operator). Then determine (using the Blender keymaps — as on page 100) the least used
shortcut and use it in your add-on;

Assign the shortcut to your operator in a new so-called “key map”, in the keyboard configuration named
bpy.context.window_manager.keyconfigs.addon (page 100). Do it in the register() procedure and save
these objects in a global variable. You will need them in the unregister() procedure (page 101);

When your operator has several variants, as Boolean in this example, it is a good idea to assign the key-
board shortcut to a pie menu, which in turn invoke the operation selected by the user (page 102, 103);

You can use the standard Blender icons in your user interface (page 103, 104);

Copyright Witold Jaworski, 2011-2019.

106 Creating the Blender Add-On

4.5 Implementation of the add-on preferences panel

In principle, our object booleans.py add-on is ready. In this section | will just add a small utility: add-on prefer-
ence panel that will allow the user to change the shortcut key assigned to the Boolean operator.

To test the preference panel, | need to install this add-on. | did it in the Blender Preferences window

(Edit>Preferences), clicking the Install... button (Figure 4.5.2):

Interface Official Cormrmunity Testing sk Imstall.. g3 Refresh

Emes Ohject 1. Click
VISl i this button

Wiewport .
Lights=

Editing

Anirmation

Add-ons
obje l:t_|:| ooleans

L ot ot

.;E;. object boolean:

Chilsersimeteclipse-workspaceiBooleamysrcy, In=stall Add-on from File. ..

SIEE Cancel

Input 4l 2. Go to the subdirectory of your Eclipse project and
e r: select the add-on script

g.51 KiE

3. Click this button
to install this add-on

"l

Interface Official ornrmunity Testing L Install.. £ Refresh

Themes All

Wiewport L

—_

2 Boolean|operations

Light= Cescripti. Performs simple ['destructive’..n operation on selected objects

Editing Location: Cbject = Boolean

File: CilsersimelApplataiRoamin. ptstaddonsiobject booleans. py

Animation

SCULIEIN \\ hen you make this Preferences window wider, you
fdd-ons el Will be able to read the full path to the installed file

warning: g Still in the 'beta’
Imput
Internet: E Docurnentation

Mawigation
Figure 4.5.2 Add-on installation

In the file selection window, | opened the Eclipse project folder
and in the src subdirectory | selected the object booleans.py
file. During this “installation”, Blender copies this file into its add-
on folder for the user add-ons. (You can read the full path to this
copy from the File field, displayed in the add-on panel).

In my Eclipse project | created an “archive” folder for unused
files named prev and moved there the original script file. Then in
the src folder | added a link to the add-on file that | installed in
Blender. (I did this using File 2New command, as described on
page 146). Now this installed Blender add-on file is simultane-
ously the current script in this Eclipse project.

Programming Add-Ons for Blender 2.8 — version 2.0

ion - use with caution

&y Report a Bug IE:} Rermowe

=

5 Project Explorer 33 = O
Shortcut to the
4125 Boolean installed Blender
add-on
a [src

:-@ object_booleans.pﬂ
» = blender_file

4 = prev

[F] ohjectbooleans.py

- ¢ Python 3.7 (64-bi ... thon37\pythor

Figure 4.5.1 Shortcut to Blender add-on file

www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 107

You cannot use the Run.py script for debugging an installed Blender add-on, as we did in the previous sections
of this guide. That’s why | added a few new lines of code at the beginning of the object _booleans.py file. They
will connect it to the PyDev remote debugger (Figure 4.5.3):

import bpy
import traceback

if DEBUG == This is the PYDEV_PATH from

import sys Run.py (see page 53)
pydev _path =

§ 'C:/Users/me/.p2/pool/plugins/org.python.pydev.core 7.2.1.201904261721/pysrc’
} if sys.path.count (pydev path) < 1: sys.path.append(pydev path)

) to import this module, | am adding the full

import PydeVd<_path to */pysrc directory to PYTHONPATH Invoke PyDev remote
‘(//F__ debugger client

pydevd.settrace (stdoutToServer=True, stderrToServer=True, suspend=False)

Figure 4.5.3 Initialization of the PyDev debugger client in the installed add-on script

¢ Remember that an active (i.e. enabled) add-on is being loaded and registered during Blender initialization.
That’s why you have to run the remote PyDev debugger in Eclipse before you open the test *.blend file.

After these preparations | added to this plugin an API class that implements the preferences panel. It extends
the AddonPreferences base class (Figure 4.5.4):

|It must inherit from this base class

class Preferences (bpy.types.hddonPreferencestt

"'"'This class provides the user pssibility of altering the keyboard shortcut
assigned to the Boolean pie menu

rror

,,,,,,,,,,,,,,,,, «— |For this id always use the name of this script file |

bl idname =! name !
’Properties (panel controls) ‘ |These functions initialize the panel controls |
v
fshifti BoolProperty (name = "Shift", description= "Use the [Shift] key",
! ! default=False)
ictrl ! 1 BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",
} i default=False)
talt 1: BoolProperty(name = "Alt", description= "Use the [Alt] key",
3 ! default=False)
‘key | EnumProperty(items = [(!NONE', "None', "No hotkey!)] + ..
i [tuple ([chr(i),chr (i), "[%s] key" % chr(i)]) for i in range (65, 91)J,§
‘name = "Keyboard key”, AT
3 3 p— n ”n
iii;iiitio?Dj, selected keyboard key", This expression generates for every letter from
'A'... 'Z' range the three-element tuples:
) (‘A ‘A, “[A]l key”) (‘B’, ‘B’, “[B] key”), ...
——— ‘ and so on.

def draw(self, context):

layout = self.layout i
layout.prop (self, "key")
self, "shift")#——|The simplest function that places

layout.prop (self, "ctrl™) the class properties on the panel
layout.prop(self, "alt")

layout.prop

— e~ —~

Figure 4.5.4 First version of the plugin preferences panel

This is a simple class containing declarations of several properties (panel controls) and the draw() method,
which displays them on the screen. At this moment these controls are placed in a column (like menu items).

Copyright Witold Jaworski, 2011-2019.

108 Creating the Blender Add-On

Instead a list of static items, | placed an expression in the key enumeration property. It generates the item defi-
nition tuples for the 26 ‘A’..."Z’ letters (ASCII codes from 65 to 91). | did it just because | did not want to type all
these 26 tuples. Note also that | placed the add-on file name (without the “py” extension) as the bl_idname
value. (I used the Python global __name__ variable for this purpose).

This new API class needs to be registered. This is the third class that we have to handle in this way. To minimize
the chance for stupid mistakes (as registering the class in the register() method and forgetting unregister it in
unregister()), | introduced an auxiliary, global list of the API classes handled by this module (Figure 4.5.5):

iclasses = [: : - 1
| This global list classes contains the API|
! OBJECT OT Boolean, 4~ |qjasses for registering/unregistering
VIEW3D MT Boolean,
Preferences, :
1 1

bpy.types.VIEW3D MT object.pre
register keymap ()
if DEBUG: print(_ name + ":

d (menu_draw)

Now | handle API registering/
unregistering in a loop

def unregister () :
unregister keymap ()
bpy.types.VIEW3D MT objec

emove (menu_draw) Diagnostic messages

if DEBUG: print(name + ": UNregistered")

Figure 4.5.5 Modified registration procedures

Instead of single calls to the register_class() method, now | call this method in a loop for all the items from list
classes. Additionally, at the end of the register/unregister procedures | placed auxiliary diagnostic messages.
(They are still useful, accompanying the debugger data). To turn them off, set the DEBUG variable to 0.

When you enable our add-on — Blender will load this code and display its preferences panel (Figure 4.5.6):

v Object: Boolean operations
Descripti. Performs simple ['destructive') Eoolean operation on selected o..
Location: Tbject = Boolean

File: ChlsersimeltpphatatRoamingt. riptstaddonstobject booleans. py

Author: Witald |awaorski Enable this add-on, to see its
“ersion: 0.5 preferences panel

wiarning: g Still in the 'beta’ version - use with caution

Internet: E Docurnentation li';l, Report a Bug Q Rermowve

Preferences:

This layout is unreadable
— | have to fix it

Figure 4.5.6 Initial look of the preferences panel

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 109

The preferences panel displayed properly, but its layout is unreadable (it is difficult to recognize that it describes
a keyboard shortcut). Figure 4.5.7 shows the fixed draw() function:

def draw(self, context): |Set the controls horizontally (in a row) |

row = self.layout.row(align= True
row.alignment = 'LEFT' ¢+—— ¥~ |Align them to the left |
row.separator (factor = 10)« |A spacer in between |

row.prop (self, "key", text—"Keyboard shortcut’y

Different label for the dropdown menu
row.separator (factor =

row.label (text="with: |Another spacer (thinner than the first one)

row.prop (self, "shift") X
Addltlonal label

row.prop(self, "ctrl')
row.prop (self, "alt")

Figure 4.5.7 Fixed draw() function

Of course, | gradually transformed the code from Figure 4.5.4 to the state depicted above, testing after each
step the updated preferences panel in the Blender Preferences window. (After every modification | saved this
add-on file and turned the add-on off and on). You can see the ultimate result in Figure 4.5.8:

Y Dbject: Boolean operations

Cescription: Ferforms simple ['destructive'] Boolean operation on selected objects

Location: Dbject = Boolean

File: ChlsersymeltpphatatRoamingiBlender Fo. ery2 scriptsladdonsiobject booleans. p
Authar: Witald Jawarski

Wersion: 0.5

Warning: A Stillin the 'beta’ version - use with caution

Internet: E Docurmentation 'fj Report a Bug e Rermowve

Preferences: Additional label

Keyboard shortcut:

L)

with: Shift Crl

=
m

spacer

This dropdown menu
was created from the
key enumeration

I 1m o 11= |
13 L I

1=

Figure 4.5.8 Fixed preferences panel

The first value on the key dropdown list — None — turns off this keyboard shortcut (and in the effect — the pie
menu of the Boolean command). | added this item just in case, if the user decides that she/he does not need
any shortcut for this command.

Now make another test: select from this list a different key — let’s say E — and close Blender leaving this add-on
enabled (active). Blender 2.8 automatically saves all the add-ons preferences, so this setting also is saved.
Then open Blender again. Note that the state of this plugin is restored in this new Blender session: the Boolean
operations add-on is enabled, and the E key is already set in its preferences panel.

However, if you disable this add-on and quit Blender, then open Blender again and enable the add-on, it will
display the default D shortcut.

e The add-on preferences are saved between Blender sessions as long as this plugin is enabled. Blender
removes add-on settings when it is disabled by the user (in the Blender Preferences: Add-ons).

Copyright Witold Jaworski, 2011-2019.

110 Creating the Blender Add-On

OK, we have checked that the add-on settings are preserved between Blender sessions. However, at this mo-
ment these add-on preferences are not connected to the rest of the plugin code. In particular, the shortcut keys
selected in the preferences panel do not open the Boolean pie menu. It’s time to implement this connection.

When | write a program, | always try to follow the “single place” rule: every operation (as keyboard shortcut reg-
istration or setting the default values) should take place in a single place of my code. It can be implemented as a
function or procedure, or a constants declaration. In all other places, where | need it, | am using this function,
procedure or constants. (In this way | minimize the potential risk of the errors caused by changing the code in
one place while forgetting to make corresponding update in the other, where | implemented similar operation).
That's why for the shortcut keys in this script | decided to set their default values in a global dictionary named
hotkey defaults (if | could do it in Python, | would mark it as constant). | am going to use these values in the
call to function keymap_items.new() in the register_keymap() method (see Figure 4.4.3, page 100). In the
code below | am re-using hotkey_defaults items as the default values of the API properties (Figure 4.5.9):

thotkey defaults = {"idname": 'wm.call menu pie', "type'": 'D', "value": 'PRESS',
‘ "shift": False, "ctrl": False, "alt":False}!
e

This dictionary contains default values for the arguments of the keymap_items.new() function (used in
register_keymap()). The keys of this dictionary are the names of these *.new() function arguments.

class Preferences (bpy.types.AddonPreferences) :
"'"'This class provides the user pssibility of altering the keyboard shortcut

assigned to the Boolean pie menu
rr

bl idname = name

shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",
defaultshotkey defaults["shift"])

ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",
default=hotkey defaults["ctrl"])

alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

key : EnumProperty(items = [('NONE', "None",'"No hotkey")] +
[tuple ([chr(i),chr (i), "[%s] key" % chr(i)]) for i in range (65, 91)1,

name = "Keyboard key",

description = "Selected keyboard key",

default = hotkey defaults["type"]¢——|I use the corresponding hotkey_defaults
frmttee T T items as the default values of the API

) properties.

the draw() method — without changes

Figure 4.5.9 Declaration of the default keyboard shortcut

Note that the keys in the hotkey_defaults dictionary must match the argument names of the
keymap_items.new() function. (I could skip all its optional arguments). | placed the declaration of this dictionary
above the Preferences class declaration, because the API functions that initialize the properties of this class use
hotkey_defaults dictionary entries as their default values.

e Blender executes functions BoolProperty() and EnumProperty() in the code above when it loads (acti-
vates) the add-on, before calling the register() function. That's why you can use in their arguments only the
values that are already declared in the previous lines of this script.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 111

Then | modified the register_keymap() procedure (Figure 4.5.10):

|args contains arguments for the keymap_items.new(). Initially it copies the defaults |

def register_keymap () :
''"'"Registers currefdt hotkey''' ~~ m e s s e oo oo mm— e — - ———— -

The .addons will not contain this script name when it is run
args = hotkey defaults from the Run.py code. (I added this condition just in case)

if Preferences.bl idname in bpy.context.preferences.addons: !

|prf: contains current settings

prf = bpy.context.preferences.addons[Preferences.bl idname].preferences

The args dictionary is modified according the current add-on settings |
il |

args|["shift"], args|['"ctrl"]l, args["alt"] = prf.shift, prf.ctrl, prf.alt

prf = None<—|| am setting this value just for the diagnostic message (below) |

args|["type"] = pr*f. key

if args["type"]== 'NONE' return € |If the user does not want a shortcut: quit this procedure

key config = bpy.context.window manager.keyconfigs.addon //’

if key config: R
key map = key config.keymaps.new(name = "Object Mode") A
hotkey = key map.keymap items.new (**args)< Use the updated args in this

hotkey.properties.name = VIEW3D MT Boolean.bl idname |function as the argument list
addon_keymaps.append((key map,hotkey))

if DEBUG: print ("Keyboard shortcut set to: "

("[Shift]-" if args["shift"] else "")
"[Ctrl]-" if args|["ctrl"] else ")

"[Alt]-" if args["alt"] else ")

"[%s]" % args["type"])

" (from add-on preferences)" if prf else ""))

+
+
message +
+
+

Aucxiliary diagnostic (
| (
| (
3 (

Figure 4.5.10 Using the add-on preferences in the keyboard shortcut registration

When you compare this code with the previous version of keymap_register() from Figure 4.4.8 (page 102), you
can see that it is much more extended. Additional lines at the beginning prepare the arguments for the
keymap_items.new() function (dictionary args). Initially this is a copy of the hotkey_defaults dictionary. Then |
update it with the values from the current addon settings. For this purpose, | use a local variable prf that repre-
sents the data from the preferences panel. | override the corresponding args entries with the prf properties. If
the users selected the ‘NONE’ value as the key (see Figure 4.5.8), | quit this procedure at this point (no shortcut
will be registered). Otherwise keymap_register() registers the new shortcut, as it did before.

At the end of this method | placed an auxiliary diagnostic message. (Set the DEBUG constant to 0, to turn it off).

To check if this updated code works, enable this add-on and select key E in its preferences panel, then close
Blender and open it again. Observe the diagnostic messages in the console (Figure 4.5.11):

& Console &3 Tasks Problems

Debug Server

IAdd-on activation |

i Keyvboard shortcut set to: [D] (from add-on preferences) - -

|) . i |Setting the shortcut key in the pref-
' object booleans: registered !)

= : = erences panel to E closing and
1 KEeyvboard shortcut set to: [E] (from add-on preferences) .

5 i |re-opening Blender

object booleans: registered

Add-on displays this message while loading

Figure 4.5.11 Effects of the updated register_keymap() method

Copyright Witold Jaworski, 2011-2019.

112 Creating the Blender Add-On

The script reads its new preferences when Blender was loading, and assigns the pie menu keyboard shortcut to
key E| However, the user will interpret such an “late” application of the setting changed in the previous session

as an error. An she/he will be right. In Blender environment all updates you are making in the panel controls are
applied immediately (there are no “OK” buttons in Blender GUI). To immediately apply the changes in the
Preferences panel | added to the Preferences class a special method on_update(). Then | passed this proce-
dure to the functions that initialize this class properties (in their optional update arguments). Now Blender will
call on_update() when the user changes (via panel controls) these API properties (Figure 4.5.12):

class Preferences (bpy.types.AddonPreferences) :
"'"'This class provides the user pssibility of altering the keyboard shortcut
assigned to the Boolean pie menu

rror

bl idname = name

,, Auxiliary function, invoked when the
def on_update(self, context): / property value has been updated

shift : BoolProperty(name = "Shift", description= "Use the [Shift] keyk
default=hotkey defaults["shift"], lupdate = on_update)
ctrl : BoolProperty(name = "Ctrl"”, description= "Use the [Ctrl] key",
default=hotkey defaults[”ctrl"], {update = on update)
alt : BoolProperty(name = "Alt", description= "Use the [Alffwﬁéfﬁ 777777777777777777
default=hotkey defaults["alt"], update = on update)
key : EnumProperty(items = [('NONE', "None", "No hotkey'")] +
[tuple ([chr(i),chr(i), "[%s] key" % chr(i)]) for i in range (65, 91)],
name = "Keyboard key",
description = "Selected keyboard key',

default = hotkey defaults["type”],

update = on update;
)

the draw() method — without changes

Figure 4.5.12 Handling update notifications from the API class properties

To update the Blender key map, on_update() removes eventual previous shortcut (in unregister_keymp()),
then it registers the new one (in register_keymap()). As you can see in Figure 4.5.10, register_keymap() ap-
plies the current Preferences settings, which means the current (updated) property value. Function on_update()
must be defined in the script lines that precede the property initialization functions (i.e. before the corresponding
calls to BoolProperty(), Enum Property() functions — just like the hotkey_defaults dictionary).

When you reload this add-on, every change in its properties panel will be immediately passed to the current
Blender keymap (Figure 4.5.13):

Preferences:

Kewboard shortcut: F

When | select E from this list, this new
shortcut immediately replaces the pre-
B Console 5% | <] Tasks |* Problems vious one in the Blender keymap.

Debug Server
keyhnard shortcut set to: [E]l/({from add-on preferences)
Keyboard shortcut set to: [F] (from add-on preferences)

Figure 4.5.13 Immediate changes of the pie menu shortcut key

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 4 Converting API Script into Blender Add-On 113

You still have to publish a description of this add-on in the wiki.blender.org, and to open a bug tracker for the
eventual error notifications'. However, these additional activities are not the subject of this book. The full code of
the script, we have written here, you will find on page 162.

When you finish this add-on, remember to switch its DEBUG constant to O (see Figure 4.5.3, page 107). Other-
wise it will call the PyDev Debugger client, which will cause a runtime error when the user activates this script
on another computer. Leaving these lines active even on your own computer can disturb eventual tests of an-
other add-on (if this Boolean operations add-on is also enabled).

Summary

e To test the implementation of the add-on preferences panel, you have to install your plugin in Blender (in
the Blender Preferences window — see page 106);

e You can still edit and debug such an installed script file. Just add to your PyDev project its link (page 106),
and call the PyDev Debugger client at the beginning of its code (page 107);

e To implement a preferences panel, define a new API class that extends the bpy.types.AddonPreferences
base. Set the identifier (b/l_idname) of this class to your script name. To display the preferences panel,
override its draw() method (page 107);

e As the other API classes, register your add-on preferences class in the register() method, and unregister it
in the unregister() method (page 108);

e You can load the current add-on settings (as displayed in its preferences panel) from a collection exposed
by the current context object: bpy.context.preferences.addons. Use the name of your script (without the
.py extension) as the key of this dictionary (page 111);

e To immediately update Blender settings when the user has changed one of the add-on preference pane
controls, implement a call-back function and assign it to the update notifications of the API properties (as in
page 112);

" In the result of such user feedback, | added further modifications to the script published in the previous edition of this book. Such updates
are natural part of the add-on lifecycle.

Copyright Witold Jaworski, 2011-2019.

114 Appendices

Appendices
| have added to this book various optional materials. They can come in handy when you are not sure of some-

thing while reading the main text.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 115

Chapter 5. Installation Details

In this chapter, you will find details of the Python, Eclipse and PyDev installation procedures. Study them just in
the case you have stuck somewhere in the shorter descriptions that | placed in the main text.

Copyright Witold Jaworski, 2011-2019.

116 Appendices

5.1 Details of Python installation

Since 2019 Eclipse is only available in the 64-bit variant. Thus, to ensure that there will be no conflict with the
Python interpreter, | suggest installing the 64-bit variant of the current Python version.

Open the Python project page: www.python.org, select there the Downloads menu, and then — the Python vari-

ant prepared for your OS (Figure 5.1.1):

P Welcome to Python.org

«) > Q‘ @ & Python Software Foundation (US) | https://

Vi Poczta 3 Cresto odwiedzane [ING [Zakdadki

Python

e python’ . I

About Downloads Documentation Community Success Stories News Events

All releases

Source code

stsccanhe
Windows
Note that Python 3.5+ cannot be used on Windows XP

e @ To get the 64-bit installer, open
your OS tab (Windows, in my case)

kd on
Other Platforms

License View the full list of downloads.

Alternative Implementations

Python is a programming language that lets you work quickly
and integrate systems more effectively. »» Learn More

Figure 5.1.1 Main page of the Python project

The default button (labeled “Python 3.7.3” in the figure above), downloads the 32-bit Python variant, thus | had
to ignore it. Instead, | clicked the OS name (Windows), to get the full list of the variants for this system.

From the next page | downloaded the 64-bit Python variant for Windows (Figure 5.1.2):

Python

e python’ . I

About Downloads Documentation Community Success Stories News Events

Python »» Downloads »»Windows

Python Releases for Windows

= Latest Python 3 Release - Python 3.7.3

= Latest Python 2 Release - Python 2.7.16

Select the Python version which is closest

Stable Releases to the version used internally by Blender
= Python 3.7.3 - March 25, 2019 = Python 3.8.0a3 - March 25, 2019
Note that Python 3.7.3 cannot be used on Windows XP or earlier. = Download Windows help file

= Download Windows x86-64 embeddable zip file
= Download Windows help file
= Download Windows x86-64 executable installer

= Download Windows x86-64 embeddable zip file
» Download Windows x86-64 precutable installer |4— The installer of the 64-bit Python variant

+ Download Windows x86-64 Web-based installer

= Download Windows x86 executable installer
= Download Windows x86 embeddable zip file
= Download Windows x86 web-based installer

= Download Windows x86 executable installer
= Python 3.7.3rcl - March 12,2019

Figure 5.1.2 The download page, with various Python versions

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

http://www.python.org/

Chapter 5 Installation Details 117

Select the same Python version, which is used in your Blender. (If you cannot find the identical version — select
the one that has the closest version number). Clicking the link to download of the Python setup program. In the
case as in Figure 5.1.2 the name of this file is: python-3.7.3-amd64.exe. Do not worry about the “amd’ prefix
before the “64” (bit). Despite this name, you can also run it on the PCs equipped with the Intel processors.

When you run the downloaded setup program, you can alter the Python settings or simply install it using the
default options (Figure 5.1.3):

Install Python 3.7.3 (64-bit)
Default installation: in the Select Install Now to install Python with default settings, or choose

user profile (does not require Customize to enable or disable features.
the Administrator rights)

® Install Now
Ch\Users\me\AppData\Local\Programs\Python'\Python37

Includes IDLE, pip and documentation
Creates shortcuts and file associations

2 Customize installation
Choose location and features I/\\, Here you can alter the
default settings

python

for Install launcher for all users (recommended)

WiﬂdOWS [] Add Python 3.7 to PATH Cancel

Figure 5.1.3 The first screen of the setup program

I do not like the unnecessary additions, thus | decided to alter (restrict) the scope of this installation to the mini-
mal set. | clicked the Customize installation button, which opens the screen as in Figure 5.1.4:

Optional Features

Documentation
Installs the Python documentation file.

| am going to edit Python scripts in
Eclipse, thus | do not need the
default editor pip

_\ Installs pip, which can download and install other Python packages.
I F_ [Jtcl/tk and IDLE

| also disabled the automatic invok- Installs tkinter and the IDLE development environment.

ing the Python interpreter by dou- Python test suite

ble-clicking a *.py file

Installs the standard library test suite.
% py launcher [for all users (requires elevation)

Installs the global 'py’ launcher to make it easier to start Python.

python

for

windows

Figure 5.1.4 Python setup options (form 1/2)

I do not like the default Python editor, thus | switched off the td/tk and IDLE option. | am going to use Eclipse for
the more difficult/advanced projects. For a quick look into the contents of any Python file | am going to use the
popular Notepad++ or similar program that displays the code in the syntax-dependent colors.

| also disabled the py launcher, which allows to run the *.py files as the executable programs (by double clicking

the file icon, like the files with the *.exe or *.bat extensions). | am going to use Python scripts only in the plugins,
so | do not want to run them by an accident outside this environment.

Copyright Witold Jaworski, 2011-2019.

118 Appendices

On the next screen | decided to make this Python instance available to all users of this computer (Figure 5.1.5):

Advanced Options

Install for all users / only because on my PC |
Associate files with Python (requires the py lau installed the other Python

[[] Create shortcuts for installed applications instances in the same way,

| am choosing this option

I am not going to

debug the standard
modules Precompile standard library

T~

[[] Add Python to environment variables

[Download debugging symboals

[[] Download debug binaries (requires VS 2015 or later)

Customize install location

[| C\Program Files\Python37 ” Browse

Wlndows | & Install || Cancel |

Figure 5.1.5 Python setup options (form 2/2)

On this screen | selected the Install for all users option because:

¢ linstalled the previous Python interpreters in this way (a few years ago it was the default option);

e The setup will place the Python folder in the general \Program Files directory, instead of the folder in the
user profile. (It is more difficult to find a program in the user profile. From time to time | have to find
something among these source files);

¢ | have the Administrator rights, required for this option.

| also disabled the option that allows me to debug the binary files of the Python standard modules (I am never
going to do that).

The Python installation starts when you click the Install button:

Setup Progress

Installing:

Python 3.7.3 Test Suite (64-bit)

python

for

windows

Figure 5.1.6 Python installation

The whole process takes about a minute.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 119

Finally, the setup displays its last screen (Figure 5.1.7):

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

Mew to Python? Start with the online tutorial and
documentation.

See what's new in this release.

Figure 5.1.7 The final screen of the Python installation

Click Close to complete this process.

Copyright Witold Jaworski, 2011-2019.

120 Appendices

5.2 Details of Java Runtime Environment (JRE) installation

Eclipse is a Java application, and since 2019 it requires the 64-bit variant of the Java Runtime Environment
(JRE). You can download the JRE setup program from www.java.com. On this portal you will also find the tips
about identification the JREs that you already have on your computer (Figure 5.2.1):

Download Help

JAVA+YOU,
DOWNLOAD
STEITAY

o Dol have Java? »

Figure 5.2.1 Main page of the java.com site (as in May 2019)

2. If you do not have the
64-bit JRE — click here.

Need Help? » Uninstall /

» Whatis Java?

The default JRE is 32-bit. If you find that you do not have the 64-bit JRE — click the Java Download button:

64-bit Java for Windows 4~ [iiormaton from your web browser
»Whatis Java? Recommended Version 8 Update 211 (filesize: 76.03 MB)

- IO 0 (BT RN Release date April 18, 2019

» Disable Java

» Ermor Messages ‘L We have detected you are using Google Chrome and might be unable to use the Java plugin from

» Troubleshoot Java thiz browser. Starfing with Version 42 (released April 2015), Chrome has disabled the standard way in
» Other Help which browsers support plugins. More info

If this is the proper variant —

just click this button Agree and Start Free
Download

By downloading Java you acknowledge that you have read and
accepted the terms of the Oracle Technology Network License
Agreement for Oracle Java SE

When your Java installation complstes. you may need to restart your browser (cloze all browser
windows and re-open) to enable the Java installation.

» FAQ about 64-bit Java for Windows
» System Requirementis

If the recommended variant is
32-bit — click here to select the

r'd . .
Mot the right operating system?{See all Java downloads.] 64-bit variant manually

Figure 5.2.2 Auto-detecting the JRE variant for your computer

The java.com portal detects your OS variant using the information provided by your web browser. If it proposes
the 32-bit Java — click the See all Java downloads link at the bottom of this screen.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

https://www.java.com/
https://www.java.com/

Chapter 5 Installation Details 121

It opens the page with all JRE variants. Select the 64-bit JRE from there (Figure 5.2.3):
e — |

LIS Java Downloads for All Operating Systems

RIS I GHETE Recommended Version 8 Update 211

Release date April 16, 2019

Java 7
Select the file according o your operating system from the list below to get the latest Java for your
» Where can | get Java 77 computer.
= Remove Older Versions = What is Java?
JDK
» Looking for the JOK? By downloading Java you acknowledge that you have read and accepted the terms of the Oracle

Technology Network License Agreement for Oracle Java SE

I',?_J' Windows ﬁ Which should | choose?

Windows Online

© fllesize: 1.05 ME Instructions After installing Java, you
Windows Offine For 64-bit Windows,| ~™Mayneedto restartyour
L* Rm— select this variant browser in order fo
enable Java in your
Windows Offline (64-Dit)) browser.
P Instructions
filesize: T6.03 MB

If you use 32-bit and 64-bit browsers interchangeably, you will need o install both 32-bit and 64-bit Java
in order to have the Java plug-in for both browsers. » FAQ about 64-bit Java for Windows

Figure 5.2.3 Manual selection of the JRE variant

Download and run the setup program. During the JRE installation you do not have to alter any options.

e Eclipse IDE requires the 64-bit JRE. It often happens that even on the 64-bit computers various applica-
tions install the 32-bit JRE. Thus, usually you will find that you have Java on your computer, but in the 32-
bit variant, which cannot handle Eclipse executables. Fortunately, you can have 32-bit JRE and 64-bit JRE
installed “side by side”, on the same PC.

e If you are using Mac OS, check the current Eclipse installation notes. In the moment when | am writing this
book (May 2019), they advise to install the 64-bit variant of the complete JDK (Java Development Kit).
(JDK contains the JRE). Otherwise Eclipse will display error messages.

Copyright Witold Jaworski, 2011-2019.

https://wiki.eclipse.org/Eclipse/Installation

122 Appendices

5.3 Details of Eclipse and PyDev installations

e First, check if you have 64-bit Java Runtime Environment (Java JRE) installed on your computer. In Win-

dows you can check it clicking the “Java” icon in the Control Panel. If it is not there — download the latest
Java version in the 64-bit variant from the java.com site and install it on your machine.

Let’s start by downloading the setup program. Go to the http://www.eclipse.org/downloads page (Figure 5.3.1):

#login /#Manage Cockies

(ECLIPSE

Members Working Groups Projects More~- Q-
FOUNDATION

Download Eclipse Technology
that is right for you

GET CRYSTAL REPORTS FOR

ECLIPSE - FREE

SAP4

p— iThe names of the previous Eclipse versions were inspired

§by the astronomy or physics: ,Helios”, ,Photon”, ,Neon”, ...
iHowever, a year ago the Eclipse Foundation changed its
imind, and the new versions are named after the year and

A imonth of the release date.
» v
Get Eclipse IDE 2019-03 g OrieN
Install your favorite desktop IDE packages. Eclipse Che is a developer A modern, open source software

workspace server and cloud IDE. development environment that

runs in the cloud.
Download the setup program
of the latest Eclipse version

Download Packages | Need Help?

Figure 5.3.1 Selection of the Eclipse package

Click the Download 64 bit button: it opens the server selection page (Figure 5.3.2):

#llogin /& Manage Cookies

(ECLIPSE

Members Working Groups Projects More~- Q-
FOUNDATION

Home / Downloads / Eclipse downloads - Select a mirror

All downloads are provided under the terms and conditions of the Eclipse Foundation Software User Agreement unless
otherwise specified. Tomitribe:
- - Tomitribe Community
Click this button or allow| FEZEEEETREEEEL
/_ the page to select the The Perfect Java Blend
best server for you

™oT

Download from: Germany - RWTH Aachen University (h

File: SHA-512 1

~
>> Select Another Mirror R

othe?lnptions for this file

OR Get It Faster from our Members « ANFrirrors (um)
+ Direct link to file (download
starts immediately from
best mirror)

Figure 5.3.2 Select the server for download

' Some Linux distributions, like popular Ubuntu, have GCJ as their default Java virtual machine (VM). In this environment, Eclipse runs
much slower than on the JVM from the www.java.com. What ’s more, even after the JVM installation on Ubuntu, it is not set as the default
VM! You have to correct it manually. More about this — see https://help.ubuntu.com/community/EclipselDE.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

http://java.com/pl/download
http://www.eclipse.org/downloads
http://www.java.com/
https://help.ubuntu.com/community/EclipseIDE

Chapter 5 Installation Details

123

When you run the setup program, you will see the window where you can select one of the Eclipse packages

(Figure 5.3.3):

eclipse

type filter text
JIJZ Eclipse IDE for Java Developers

Editor, Mylyn, Maven and Gradle integration

Eclipse IDE for Enterprise Java Developers

W/
i,_ , The essential tools for any Java developer, including a Java IDE, a Git client, XML

P, L.
g@ Tools for Java developers creating Enterprise Java and Web applications, including

aJava IDE, tools for Enterprise Java, |PA, JSF, Mylyn, Maven, Git and...

Eclipse IDE for C/C++ Developers

‘.'
+
+

An IDE for C/C++ developers with Mylyn integration.

Click to select one
of the packages

The essential tools for any JavaScript developer, including JavaScript, HTML, CSS,

¥
@ Eclipse IDE for JavaScript and Web Developers (includes

XML languages support, Git client, and Mylyn.

Eclipse IDE for PHP Developers

di

client, Mylyn and editors for JavaScript, HTML, CS5 and XML.

Figure 5.3.3 Selection of one of the Eclipse variants (packages)

The essential tools for any PHP developer, including PHP language support, Git

In fact, Eclipse is a kind of open IDE framework, which can be adapted by appropriate plugins for any program-
ming language. On the Eclipse Internet site, you can find some ready-to-use plugin packages for the most popu-
lar languages. There is no "Eclipse for Python" bundle among them, so we will make it ourselves. Just download
any of these packages. For example, you can choose the “nearly empty” Eclipse for Testers (you can find it
lower on the list displayed in Figure 5.3.3). Personally, | selected Eclipse IDE for JavaScript, because it con-
tains some additional tools that | am going to use for other purposes (not connected with Blender).

When you click the selected package, in the next window you can alter the default folder for the program files:

eclipse

Eclipse IDE for JavaScript and Web Developers (includes

j@ incubating components)
The essential tools for any JavaScript developer, including Java5cript, HTML, €SS, XML

languages support, Git client, and Mylyn.

By default, Eclipse is installed

/_ in the user profile

/Y
Installation Folder C:\Users\me\ecIipse\javascript-20l9-03|

V create start menu entry

" create desktop shortcut

Figure 5.3.4 Eclipse installation options

=

Start

installation

the

| am leaving it in the default folder here, so that most probably it will match your installation.

Copyright Witold Jaworski, 2011-2019.

124 Appendices

e By default, Eclipse creates its folder in the current user directory. | decided to continue using these settings,
because in the course of this book we will have to identify a certain folder among the Eclipse plugins. If | in-
stalled this IDE in a non-standard folder, some of the Readers would get lost at that point.

When you click the INSTALL button, you will have to do some “legal paperwork”, accepting various agreements:

Eclipse Foundation Software User Agreement

Applicable licenses will be discovered and prompted
Avoid such interruptions by accepting the most cor

Licenses

Review and

Eclipse Foundation Softwa

Do you trust these certificates?

April 9, 2014 1> [&5] Eclipse on Software User Agreement ~
clipse ‘Ecl\pse Foundation), Inc.; Java Software Cede Signing; Sun Microsystems \nc‘ 17
Usage Of Content 3 clipse
1> [&5] Eclipse "

THE ECLIPSE FOUNDATION MAKES Al © & Fefipse

INFORMATION AND/OR OTHER MA
(COLLECTIVELY "CONTENT"). USE O}
AND CONDITIONS OF THIS AGREE
LICENSE AGREEMENTS OR NOTICES
THE CONTENT, YOU AGREE THAT Y
THIS AGREEMENT AND/OR THE TER)
LICENSE AGREEMENTS OR NOTICES
NOT AGREE TO THE TERMS AND CO
AND CONDITIONS OF ANY APPLIC
INDICATED OR REFERENCED BELOW R NOTICES INDICATED OR REFEREMCED BELOW. IF YOU DO MOT AGREE

Applicable Licenses Select All Deselect Al NDITIONS OF THIS AGREEMENT AND THE TERMS AND CONDITIONS

EMSE AGREEMEMTS OR NOTICES INDICATED OR REFERENCED BELOW,

UNDATION MAKES AVAILABLE SOFTWARE, DOCUMENTATION,
MATERIALS FOR OPEN SOURCE PROJECTS (COLLECTIVELY

S GOVERNED BY THE TERMS AND COMNDITIONS OF THIS AGREEMENT

MDITIONS OF LICENSE AGREEMENTS OR NOTICES INDICATED OR

G THE CONTENT, YOU AGREE THAT YOUR USE OF THE CONTENT IS

ENT AND/OR THE TERMS AND CONDITIONS OF ANY ARPPLICABLE

Unless otherwise indicated, all Content ma a Eclipse Foundation), Inc.; Java Software Cede Signing; Sun Microsystems Inc
under the terms and conditions of the Eclip: 4 Eclipse Foundation), Inc.; Java Software Code Signing; Sun Microsystems Inc HE COMTENT.
1s provided with this Content and is also av: JCE Code Signing CA; Java Software Code Signing; Sun Microsystems Inc

ses

purposes of the EPL, "Program” will mean

indicated, all Content made available by the Eclipse Foundation v

Content includes, but is not limited to, sour

mamntamed in the Eclipse Foundation sourc
e 41 u 1 1 s 1 1 nses. | Accept | Decline
Acceptsclected | | Concel

Figure 5.3.5 License agreements and certificates, accepted during Eclipse installation

Finally, you will get to the last screen of the setup program:

L

eCI|pse|nSta”er by Oomph

incubating components)

The essential tools for any Javascript developer, including JavaScript, HTML, CSS, XML
languages support, Git client, and Mylyn.

@ Eclipse IDE for JavaScript and Web Developers (includes

Installation Folder Ch\Usersime\eclipse\javascript-2019-03

V create start menu entry

Start
Eclipse IDE

' create desktop shortcut

show readme file

open in system explorer

keep installer

£ BACK

Figure 5.3.6 The final screen of the setup program

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 125

When you launch Eclipse, it always displays a dialog box where you can select the location of its projects direc-
tory (it is called “workspace”). You may just confirm this default (Figure 5.3.7):

Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

If you are not going

to work on more than| o .o.ce g [CUsers\me) scipse-workspacl <] [Browse.
one project in the
pro) "~ [Users home directory. (Note that this is

same time, you may
check this option not the My Documents folder!)

wx
||:| Use this as the default and do not ask again

Figure 5.3.7 Selecting the current workspace

Each of Eclipse projects is a separate folder that contains your Python script(s) and a few configuration files. (If
your script is located elsewhere on the disk, you can put just its shortcut in the project directory). Notice that the
default Eclipse workspace folder is in the root directory of the user profile. (In this example, the username is
me). This is not My Documents folder, but its parent. (It is the Unix/Linux convention of the home directory). If
you want to keep all your data in My Documents — change accordingly the path displayed in this window.
Eclipse will create this directory, if it does not exist.

o Eclipse is always proposing to open the most recently used project from the last workspace.

On the first launch, Eclipse opens the “Welcome” window (Figure 5.3.8)

File Edit Mavigate Search Project Run Window Help
VE' (£ Welcome 2 oo oA = &

& .
% EC| |pse Welcome to Eclipse IDE for JavaScript and Web Developers
Workbench

n. Review IDE configuration settings Ej Overview
Review the IDE's most fiercely contested preferences Get an overview of the features
0 Create a new web project 7= Tutorials
Create a new dynamically configured project that supports Go through tutorials
JavaScript, CS5, HTML, and other technologies
. . Samples
Checkout projects from Git / L
o . .) Try out the samples
Checkout Eclipse projects hosted in a Git repository

Click here to add the Python
IDE (PyDev) to this package

4 Import existing projects
Import existing Eclipse projects from the filesy:

m or archive

Enhance your IDE with additional plugins and install your

Marketplace favorites Here yOU can turn Off thIS
“Welcome” window

t: Launch the Eclipse Marketplace

D Open an existing file

Open a file from the filesystem l

E|Alwavs show Welcome at start up

Figure 5.3.8 Eclipse window on the first launch

Disable on this screen the Always show Welcome option, and then click the item named Launch the Eclipse
Marketplace. It starts the Python IDE installation (an Eclipse plugin, named PyDev).

Copyright Witold Jaworski, 2011-2019.

126 Appendices

e You can also find the same command under the Eclipse Marketplace... label in the Help menu.

It opens the form that lists all the Eclipse plugins (Figure 5.3.9):

Eclipse Marketplace

Select selutions to install. Press Install Mow to proceed with installation.

1. Search for a Press the "more info" link to learn more about a solution.
plugin named : — -
“PyDev” Searchl Recent| Popular| Favorltes| Installed| w 2019 in Focus|
Find: A 7| | All Markets v || All Categories v/

PyDev - Python IDE for Eclipse 7.2.0

PyDev is a plugin that enables Eclipse to be used as a Pythen IDE

ePyDev (supporting also Jython and IronPythen). It uses advanced type inference
techniques which allow... more info

by Brainwy Software, EPL
IDE Python Aptana Pydev Django ...

Installs: 1,17M (12 694 last manth) -

2. When you find it
— click here

Figure 5.3.9 Plugin selection window

In the Find field type “PyDev” and run the search. In response Eclipse will find the plugin as in Figure 5.3.9.
Click its Install button. It displays another window where you have to confirm the plugin components (Figure
5.3.10):

Confirm Selected Features

Press Confirm to continue with the installation. Or go back to choose more
solutions to install.

4 [¥] 4t PyDev - Python IDE for Eclipse 7.2.0 http://www.pydev.org/updates/
s PyDev for Eclipse (required)
s Pydev Mylyn Integration

\
\

[|Confirm the selected set |

< Install More ” Confirm » | Finish

Figure 5.3.10 Confirmation of the PyDev components

| changed nothing here, just clicked the Confirm button.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 127

In response Eclipse opens another window, with the license agreements (Figure 5.3.11):

Review Licenses

Licenses must be reviewed and accepted before the software can be installed.

Licenses: License text:

| [» Eclipse Public License Eclipse Public License
[» Eclipse Public License - v 1.0

@ accept the terms of the license agreements
=

| do not accept the terms of the license agreements

1
Select I accept...
and continue

Figure 5.3.11 Confirmation of license agreements

Accept these agreements (by selecting I accept ... option) and click the Finish button. It starts the PyDev instal-
lation. During this process Eclipse downloads various components from the Internet, so make sure that you
have a live connection to the web.

The progress is displayed in the Eclipse status bar (Figure 5.3.12):

= L

File Edit Mavigate Search Project Run Window Help
‘s | @ Welcome 3 F == 3 = =

= P r
(% EC|Ipse Welcome to Eclipse IDE for JavaScript and Web Developers
‘Waorkbench

ﬂ. Review IDE configuration settings g Overview
Review the IDE's most fiercely contested preferences Get an overview of the features
o C = a hew web project = Tutorials
Create a new dynamically configured project that supports Go through tutorials
JavaScript, C55, HTML, and other technologies
- . ~ 2 Samples
Checkout pro from G
0 -heckout p om it / Trv out the samole;

Checkout Eclipse projects hosted in a Git

L 2 Import existing projects
Import existing Eclipse projects from the

L] Always show Welcome at start up

Installing Software: (48%)

ot o

Launch the Eclipse M
Enhance your IDE with add|
Marketplace favorites

Open an existing file
Open a file from the filesystem

Eclipse displays installation

progress in the status bar \
: Installing Software: (48%) L=

Figure 5.3.12 Installation progress indicator

Copyright Witold Jaworski, 2011-2019.

128 Appendices

When the PyDev installation is completed, Eclipse proposes a restart (Figure 5.3.13):

@ Would you like to restart Eclipse IDE to apply the changes?

|| Restart Now |||

Figure 5.3.13 The final window of the plugin installation

Confirm this proposal, clicking the Restart Now button.

e You can safely install different Eclipse versions “side by side”, on the same PC. (This hint can be useful in
the future, when you decide to install a version of the Eclipse IDE).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 129

5.4 Details of the PyDev configuration

Once installed, you have to configure the in PyDev the default Python interpreter. This information is stored in
the current Eclipse workspace (ref. page 13, Figure 1.2.5). To set it, use the Window 2>Preferences command
(Figure 5.4.1):

File Edit Mavigate 3Search Project Run | Window | Help

E .@ Welcome 3 MNew Window
Editor 3
e | A R
_— ppearance) -
(eC |pse e IDE for JavaScript and Wel
) Show View 3
Perspective 4
Mavigation 4
| Preferencl;s
ﬁ. Review IDE COTTIOUT &S0 GETUNGS E:j Ove
Review the IDE's most fiercely contested preferences Get :

o Create a new web project = Tuk

Create a new dynamically configured project that supports Go t
Javascript, CSS, HTML, and other technologies

AN Fhaclennt nradincte froam ik y San
Figure 5.4.1 Opening the current workspace configuration

In the Preferences window expand the PyDev section, and in the Interpreter subsection highlight the Python
Interpreter item (Figure 5.4.2):

|t)rpefi|ter text Python Interpreters

> General

Python interpreters (e.g.: python.exe, pypy.exe). Double-click to rename.

1> Help
1> Install/Update Name Location | Browse for python/pypy exe |
1> JavaScript

1> JSON |

1> Mylyn A
b O:r:ph Select this ... and click | ConfigfirstinPATH |
a PyDev item.... this button 'I Choose from list
Builders
1> Debug
1> Editor
| Interactive Console

MNew with Pipenv |

Remove
Up

4 Interpreters

IrenPython Interpreter
thon Interprete 3 Packages |ﬂ Libraries | Forced Builtins | Predefined | P& Environment | @ String Substitution Variables
Legging
PyUnit
Run

Library Version Manage with pip

Manage with conda

Scripting PyDev
Task Tags
i» Run/Debug
[Server
[Team
> Terminal
Validation

® U\—il uﬁl Apply and Close| | Cancel

Manage with pipenv

[Load conda env vars before run?

Figure 5.4.2 Automatic configuration of the Python interpreter

Now you have to select the external Python interpreter that will be used by the PyDev. To do it, click the Choose
from list button. It starts with searching the Python instances installed on your computer.

Copyright Witold Jaworski, 2011-2019.

130 Appendices

If the program finds more than one Python interpreter — it shows their list (Figure 5.4.3):

Multiple possible interpreters are available,
Please select which one you want to install and configure.

& C:\Program Files (x86)\Python34\python.exe
& C:\Program Files (x36)\Python2T\python.exe
& C:\Program Files\Python37\python.exe

Select the proper
Python version

Figure 5.4.3 Selecting the 64-bit Python version from the list of the interpreters installed on the local computer

Select from this list the interpreter you just have installed (i.e. the 64-bit variant of the version that matches the
Python version in your Blender — see section 1.1, page 8).

It may happen that PyDev is not able to find the proper Python interpreter. In such a case, in the Preferences
window click the Browse for python/pypy.exe button (see Figure 5.4.2). It will open the window of ,manual” Py-
thon selection (Figure 5.4.4):

Type here the name, under

Enter the name and executable of your interpreter L \
which it will appear in the PyDev

Interpreter Mame: Python 3.7 |
Interpreter Executable: | C\Program Files\Python37\python.exe | Browse...

\ Enter here full path

to the python.exe

0K Cancel

Figure 5.4.4 “Manual” selection of the Python interpreter

Type here (or select using the Browse... button) the full path to the python.exe file of the 64-bit Python instance.
(Do not select the pythonw.exe by mistake!) In this window you can also determine the name of this interpreter
in the PyDev environment. (This is just an aesthetic issue).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 131

When you choose the Python instance, PyDev will display Python directories in a new window. They will be
added to the PYTHONPATH configuration variable (Figure 5.4.5). Just accept it without any changes:

Select the folders to be added to the SYSTEM pythonpath!

Checlehttp:// pydev.org/manual_107_interpreter.html for more details.

IMPORTAMNT: The folders for your PROJECTS should NOT be added here, but in your project configuration,

& C:\Program Files\Python37\DLLs
&) C:\Program Files\Python37\lib
&) C:\Program Files\Python37

&) C:\Program Files\Python37\lib\site-packages

Figure 5.4.5 Selection of the directories that will be added to the PYTHONPATH system variable

Select All not in Workspace| | SelectAll | | DeselectAll |

In the result, the configured Python interpreter appears in the Preferences window (Figure 5.4.6):

| type filter text

[» General

[Help

i» Install/Update
[» JavaScript

> JSON

Python Interpreters

GvyD v w

Python interpreters (e.g.: python.exe, pypy.exe}. Double-click to rename.

& Python 3.7 (64-bit)

[Mylyn

i+ Oomph || altered

this name (for the clarity) |

a PyDev
Builders
1> Debug
|» Editor
| Interactive Console
4 Interpreters

IronPython Interpreter

Jython Interprete
Legging
PyUnit
Run
Scripting PyDev
Task Tags
I» Run/Debug

MName Location

C:\PrograRFiles\Pyth on3T\python.exe

Configured Python
d interpreter

| Browse for python/pypy exe |

MNew with Pipenv

Choose from list

|
Config firstin PATH |
|
|

Remove

I}
£ Packages| = Libraries |Forced Builtins | RAredefined | P% Environment | @ String Substitution Variabl5|

Up

Down

System PYTHOMNPATH. Reorder with Drag & Dr:op.

a =), System libs

& C\Program Files\Python3T

& C\Program FiIes\PythoniDB‘LL’s
&) C\Program Files\Pythof6Tlib

-
-

& CA\Program Files\Python37\lib\site-packages

MNew Folder
MNew Egg/Zip(s)

Click here to save

this definition

=
]
=
=
-1
=1
o
(]
2
[

%
=1
[a)
m

Figure 5.4.6 Configured Python interpreter

Copyright Witold Jaworski, 2011-2019.

132 Appendices

When you accept these settings by clicking the Apply and Close button, PyDev will browse all the Python files
that are present in the PYTHONPATH directories. It will prepare the autocompletion data and the other internal
stuff Figure 5.4.7):

@ Medule resolved: distutils.errors

Cancel

Figure 5.4.7 Processing the PYTHONPATH files

Now the PyDev is ready for editing the Python scripts.

e The PyDev settings described in this section are stored in the Eclipse workspace. This means that if you
need it, you can prepare several workspaces, each with different PyDev settings (for example — different
Python interpreter). It can be useful for testing the add-ons with older Blender versions.

e To run/debug the classic (standalone) Python scripts in PyDev, you have to assign the Python interpreter to
your current project. See pages 26 and 134 for details.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 133

5.5 Managing Eclipse project perspectives

You will use two project perspectives (alternative screen layouts) while working on a Python script in Eclipse:

Debug and PyDev. Their switches are placed on the toolbar but are small and hardly visible among the other
icons and controls (Figure 5.5.1):

Run Window Help

S A N B =0 R LI A = == " @|33”r5 Quick Access

ans 532 Switches of the project perspectives| -
are small and hardly visible

| l—]

Figure 5.5.1 Project perspective buttons on the toolbar

Fortunately, you can easily enlarge them by enabling their text labels. In this mode they are more visible, which
allows for quicker perspective switching (Figure 5.5.2):

1. Click |:11/z] on the switch, With the labels, these switches
to open its context menu are larger and more readable

v
2= | .?'i'iﬁs: Quick Access ﬂ[> 13 ||%'5Ja1.r35cript ?ﬁs: Debug | [Quick Access
8l T |

lilz Cloze i

. Show Text 4_-_|2. Enable this option (adds the icon label) |
| M [

b

Figure 5.5.2 Enlarging the perspective switches

Now these enlarged items also allow for a quick identification of the current perspective.

If we have already started altering this toolbar, let's make another modification: removing from these switches
the button of the JavaScript perspective. (We do not need it in our Python project) (Figure 5.5.3):

1. Click [Z] into the switch The perspective
you want to hide has disappeared

\ 4 :ll: , \ A
! | E%’:JavaScript | e @ PyDev H& Debug CQuick Access ﬂ[| % Debug Cuick Access
| Close e i
- 2. Click Close To bring it back,
Show Text _ [2- Glick Close |

use this button

Figure 5.5.3 Removing from the toolbar the switch of an unused perspective

Copyright Witold Jaworski, 2011-2019.

134 Appendices

5.6 Configuring the running and debugging commands for standalone Python scripts

In each new PyDev project you can define how to call the Python interpreter for running / debugging the main
script in your project. These settings are grouped in a so-called Run Configuration. To set them, you need the
main source file (main Python module) in your project — even if this file is completely empty at this moment.

e Run Configuration settings are not used for running and debugging Blender API scripts, because for this
purpose we will use the PyDev remote debugger. Run configurations are required for the classic Python
modules, which are processed by the standalone Python interpreter. In this book we are using them briefly
in Chapter 2, where | am showing how to run/debug the simplest code from a classic Python file.

Let’s start with creating a run configuration. From the Run menu select Run Configurations... command:

File Edit Refactoring Source Mavigate Search Project Pydev | Run | Window Help
An AN EEEEG- R F R Q =W AR Set Mext Statemnent Ctrl+Alt+R Cluick Access B | g:;
[PyDev Package Explorer 32 = O [F] object_booleans 5% @, Run Ctrl+F11 Bl e =08
EG|en v CREE 4%, Debug F11
425 Boolean % The simplest F Run History o
4 [src 3|
: 4 def main (): | @ Runhs b
1+ [F] object_booleans.py - - | T Tanit =
. c = "Hellq un Configurations...
Python 3.7 (64-bi ... thon3 h
1> €@ Python 3.7 (i on3T\pytho p print (c) L}
= Debug History 3
8 mainm} %5 Debug As 3
Debug Cenfigurations...
Add V8/Chrome JavaScript Exception Breakpoint >

Figure 5.6.1 Opening the run configurations window

It opens the Run Configurations dialog. In the list on the left side of this window highlight the Python Run item
and from its context menu select the New Configuration command (Figure 5.6.2):

Create, manage, and run configurations

O rﬁ 0 [iE .’/\$| = Configure launch settings from this dialog:

type filter text | - Press the 'New Configuration’ button to create a configuration of the selected type.

L

ﬂ Grunt [F7 - Press the 'Mew Prototype’ button to create a launch configuration prototype of the selected type.
Gulp

B HTTP Preview
&' IronPython Run =] - Press the 'Duplicate’ button to copy the selected configuration.
& IronPython unittest
A7 Jython run

@ Jython unittest - Press the 'Filter' button to configure filtering options.
@ Launch Group

M Modejs Application
m PyDev Django - Select launch configuration(s) and then select ‘Link Prototype’ menu item to link a prototype.

23 PyDev Google App Run) .])]
E:Python Run - Select launch configuration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype.

é’ Python uni | B (Ui on(s) and then select 'Res...ype Values' menu itern to reset with prototype values.
P | New Protot}rpi{}

- Press the 'Export’ button to export the selected configurations.

- Press the 'Delete’ button to remove the selected configuration.

- Edit or view an existing configuration by selecting it.

0 Export.. ve settings from the Perspectives’ preference page.
Duplicate

Delete

L| |Link Prototype...
ul | Unlink Prototype

R | Reset with Prototype Values

Filter matched 13 of 13 items ||

)

Figure 5.6.2 Creating a new Run Configuration

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details

135

In response, Eclipse displays on the right side of this window an empty form for a new run configuration. Start
by assigning it to the current project (select your project into the empty Project field — as in Figure 5.6.3):

Create, manage. and run configurations

W

FEEY K]
| type filter text

! Grunt

Gulp

B HTTP Preview

@7 IronPython Run

él IronPython unittest

&7 Jython run

@ Jython unittest

& Launch Group

M) MNodejs Application

E PyDev Django

23 PyDev Google &
4 eP Python Run

eF Mew_configuratic

él Python unittest

/

Marme: | Mew_configuration

Select your project

into this field

B Main " _09= mrgumentqe|nterpretea(s‘§lr{efresﬂﬁ:. wTOTTTErTT

Project

I ¥ 1 ([Csrowse]
Main Medule

| | Browse...
PYTHONThis is the form of

7\ N i
Unabledthis run configuration

>

£
Filter matched 14 of 14 item

©)

Figure 5.6.3 Assigning the project

Select the Main Module of this project (i.e. your script file):

W

CE®EX|
| type filter text

! Grunt

Gulp

B HTTP Preview

@" IronPython Run

é’ IrenPython unittest

A7 Jython run

@ Jython unittest

g Launch Group

M Node,js Application

E PyDev Django

23 PyDev Google App R
Pl eP Python Run

eP Mew_configuratiol
é’ Python unittest

£ >
Filter matched 14 of 14 item

MName: | Mew_configuration

Main ()= Arguments] & Interpreter q‘f Refresh] e Environmenq lis| Common]
Project
 Boolean Sel_ect_ your Python
script into this field
Main Module

| &~

G

PYTHOMPATH that will be used in the run:

ChUsers\me\eclipse-workspace\Boolean\src
C:\Program Files\Python3T\DLLs

C\Program Files\Python3Tilib

C:\Program Files\Python37

CA\Program Files\Python3T\lib\site-packages

Ch\Users\me\.p2\pooliplugins\org.python.pydev.core_7.2.1.20190426172 1\ pysrc\pydev_sity

Eclipse displays here
the PyDev, project,
and Python paths

| Revert | | Apply |

©)

Figure 5.6.4 Assigning the main module

Choose Python module which starts execution

}& src
[F] object_booleans.py
L

Module object_booleans.py selected

@ [o]

Cancel

The file you have selected as the Main Module can be empty at this moment. Just add there the main procedure

of your script before invoking the Run command.

Copyright Witold Jaworski, 2011-2019.

136 Appendices

You can also alter the Name of this configuration for a more descriptive one. Then switch to the Common tab
and select this configuration as the default one for running and debugging (Figure 5.6.5):

Create, manage. and run configurations
Descriptive name @

CEHeE X | 3~ Name: | Run with external Python |
|t)‘PE filter text | @ Main (M= Arguments (e Interpreter (QDCQ Refresh (ﬁ Environment (E Common

! Grunt Save as

Gulp @ Local file t

B HTTP Preview] -

@7 IronPythen Run O Shared file: \Boolean In the Common tab mark this

@ IronPython unittest o . configuration as the one preferred

Display in faverites men . .

@7 Jython run for both: running and debugging

A Jython unittest #DEbUA/

& Launch Group ORun O Other I50-8259-1

M MNode,js Application

m PyDev Django

A3 PyDev Google App Run
Y! gle App

-
4@ Python Run Standard Input and Output
eP Run with external Python

é‘ Python unittest

Allocate console (necessary for input)

[Input File:
Workspace... File Systern... Variables...
[] Output File:
Workspace... File System... Variables...
Append

Launch in background

Figure 5.6.5 Marking this configuration as the default one

Save this configuration with the Close button (Figure 5.6.6):

No error
messages

Marme: | Run with external Python

|t_\,rpefilter text @ Main = Arguments] e Interpreter Q:"g° Refresh] e Environmenq lis| Common]

! Grunt Project
Gulp

B HTTP Preview
@' IrenPython Run
é’ IrenPython unittest
@7 Jython run | S{workspace_loc:Boolean/src/object_booleans.py} | | Browse... |
& Jython unittest i
R Launch Group
@) Mode.js Application C:\Users\me\.pZ_\pooI\pIugins\org.pyth on.pydev.core_7.2,1.20190426172 1\ pysrc'\pydev_sitecustomize
m PyDev Django C:\Users\me\gcl|pse-workspace\BooIea nhsrc

C:\Program Files\Python37\DLLs

5; PyDev Google App Run C:\Program Files\Python3T\lib

4@ Python Run C:\Program Files\Python37
|_eP Run with external Python' C:\Program Files\Python37\lib\site-packages -
& Pythen unittest Click Close to

changes

| Boolean | | Browse... |

Main Module

PYTHONPATH that will be used in the run:

Filter matched 14 of 14 items

©)

@ The configuration "Boolean” has unsaved changes. Do you wish to save them?

|| Don't Save || Cancel

Figure 5.6.6 Saving the run configuration

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 5 Installation Details 137

Thanks to the settings you have made in the Common tab, this run configuration is displayed as the first item in
both: Debug and Run menus (Figure 5.6.7):

File Edit Refactoring Source Mavigate Search Project Pydev File Edit Refactoring Source Navigate Search Project Pydev Run
B RAENEE =R EEY [P R R = AR Rk HuR AR =N FE-A] LRS- N AR A RAE
f2 PyDev Package Explorer|eF 1 Run with external Python F2 PyDev Package Explorer 32 |ep 1 Run with external Python |
&, Debug As 3 <L==>| =] Run As 4
412> Boolean Debug Configurations... : 41> Boolean Run Configurations... et
4 [sre Organize Favorites... 4 (2 src Organize Favorites...
b [F] object_boolearmpy - — i |F] object_booleans.py

c = NHoT 1~

Figure 5.6.7 New command in the Debug and Run menus

Copyright Witold Jaworski, 2011-2019.

138 Appendices

Chapter 6. Others

In this chapter, you will find all the detailed materials that | am referencing in the main text of this book. Thus,
this is an eclectic set of sections, describing details of various issues. You can find here solutions of eventual
problems, which you may encounter while coupling Eclipse/PyDev IDE with Blender.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 139

6.1 Updating Blender API predefinition files

In the zip package that accompanies this book there is doc folder (see page 39). In its python_api\pypredef di-
rectory | placed headers (“predefinition files” - *. pypredef) of the Blender API (Figure 6.1.1):

i(—;l - 1T | . ChProgram Files‘gBIenderidu:ucip}-'thun_apiip}rpredeﬁ V| & Search pypred... 0
. Program Files A MName ’ Date modified Type ~
o T-Zip | mathutils 2019-05-1223:52 File folder
. Blender [aud.pypredef 2019-05-1218:13 PYPREDEF File
;2,80 Q{' bgl.pypredef PyDev header files (and subfolders)
. doc thf.p}fpredef A for Blender API
! python_api [bmesh.pypredef 2019-05-12 18:13 PYPREDEF File
| pypredef [bpy.pypredef 2019-05-1223:52 PYPREDEF File
! pypredef-tmp [mathutils.pypredef 2019-05-1218:13 PYPREDEFFile
. Blender-2.69 v < 3

Figure 6.1.1 Contents of the doc\python_api\pypredef folder
You should add this folder to the External Libraries list in your PyDev project configuration (see page 40). PyDev

will use this content for code autocompletion and for displaying descriptions of Blender API functions.

In each new Blender version, there are new API functions and classes. That’s why in the doc folder you can also
find a shortcut named refresh_python_api.bat, which updates the *.pypredef files (Figure 6.1.2):

(© * 1 | . C\Program Files\Blender\doc V| < earch doc r
. Blender G Mame Date modified Type
280 _
| python_api Use this shortcut for updating the *.pypredef|

. doc . || refresh_python_api files (to match your current Blender version)

. python_api . e .
refresh_python_api.bat 2019-05-12 1830 Windows Batch File

| pypredef

Figure 6.1.2 Contents of the doc folder

Use this shortcut when you install a new Blender version. The refresh_python_api.bat runs in Blender (in batch
mode) the script named pypredef _gen.py, from doc\python_api directory (Figure 6.1.3):

i(—:l * 1 | || C:A\Program Files\Blender\doc\pythen_api V| < Search pytho.. 0
. Blender ™ Name Date modified Type
, 2.80

| pypredef This script generates the *.pypredef files

. doc def for your current Blender version

heon_api Pyprecertmp
| python_ Qf’ pypredef_gen.py 2019-05-12 23:48 PY File
| pypredef

Figure 6.1.3 Contents of the doc\python_api folder

Theoretically, pypredef _gen.py should also run properly in other operating systems, like Linux. | have not tried it.
This script is a modified version of the sphinx_doc_gen.py, developed by Campbell Barton for automatic gen-
eration of the Blender APl documentation. (The same, which was published on the blender.org pages for Blend-
er 2.5). Thanks to this code, in all the functions, classes and their methods in the PyDev predefinition files you
can find the same descriptions as in the official APl documentation.

Copyright Witold Jaworski, 2011-2019.

http://www.blender.org/documentation/250PythonDoc/contents.html

140 Appendices

When you run the doc\refresh_python_api.bat batch file, first you will see many “RNA warnings” in the system
console. After them, the script displays information about eventual updates of the target files (Figure 6.1.4):

precated since Python 3.5. Use “signature”™ and the “Signature” object directly i i
= inspect.formatargspec(*arguments) #deprecated since Python 3.3 - 1in the future I should use a inspect.Signatur

Checking for the *.pypredef files to be updated... These warnings will always appear
updating: aud.pypredef — just ignore them

updating: bgl.pypredef
updating: blf.pypredef
updating: bmesh.pypredef
updating: bmesh\types.pypredef
updating: bmeshutils.pypredef

updating: bpyZapp.pypredef ;
updating: bpyypath.pypredef < LJStOfthe uPdated
updating: bpy\props.pypredef header files

updating: bpy.pypredef

updating: bpyiutils_pypredef
updating: mathutils‘geometry.pypredef
updating: mathutils_pypredef

This message comes from Blender (on
closing, it writes it to the system console)

---done.
Closing Blender:

Writing userprefs: “CiVlsersimeZfAppData‘Roaming“Blender Foundation‘BlenderZ?.80%confighuserpref.blend” ok
Press any key to continue _ _ .

Figure 6.1.4 Updating the Blender API predefinition files

This last fragment is the most important: look at the lines that begin with “updating: ...”. They list the *.pypredef
files that have been updated. The second-last line (“Writing userprefs:...”) comes from the Blender (it prints it
while quitting), while the “Press any key to continue...” phrase comes from the standard pause command,
placed at the end of the batch file.

However, if a runtime error has occurred, the result of the batch file in system console looks like in Figure 6.1.5:

| 3 E 0 & umPrope pE

Traceback (most recent call last): This means an unexpected error in the script

‘C:\vWProgram Files‘\i\Blender\\do 1\\pypredef-tmp\\bpy.pypredef”’

0 €0 ; If this message is related to a problem with writing/
creating file or folder (like this one), then this you need
the write/create rights to this folder

Figure 6.1.5 Script error message

If the error message (you can find it below the traceback printout, as in the figure above) says about missing
permission or a problem with creating/writing to a file, then you need more (OS) privileges to doc\ folder.

e In Windows the Blender directory (C:\Program Files) is treated in a specific way. By default, no Windows
program can create/write files in its subdirectories. Thus, if you placed the doc\ folder in the C:\Program
Files\Blender directory (as | am showing on page 39), you have to alter the user privileges. Grant the writ-
ing rights to this directory to the built-in Users group.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 141

If you have no Administrator privileges to your computer — you can put doc\ folder on another directory, where
you have the right to write/create files.

e You can unpack the doc folder to any suitable place in your computer, for example — into your Documents.

In such a case just remember to make a minor update in the refresh_python_api.bat file. Replace there the

relative path (“\..”) to blender.exe with the full path, for example:

"C:\Program Files\Blender\blender.exe" -b -P python api/pypredef gen.py

At the end of this section — a few notes:

1.

The bgl module header contains just the constants symbols and function names (there are no function
parameters). This is because Blender developers did not not document in API (there are no __doc__
fields, nor the “RNA” information, as in the other modules). On the other hand, Blender 2.8 documenta-
tion suggest switching from this “old fashioned” OpenGL 1.1 bgl interface to the modern one, available
in the gpu module. (The gpu module methods are also much faster);

BMesh operators (defined in the bmesh.ops) are not documented. They do not provide the “RNA” in-
formation, as in the case of the bpy module. Their __doc__ fields contain just the function declarations,
without any description;

At the end of the main API header — bpy.pypredef file — you can find many simplified class declarations
for all the Blender panels and menus. They are useful in the case, when you want to add your com-
mand/submenu to any of these GUI elements. Otherwise PyDev editor would mark such a class name
as an error. While such an error does not prevent your Python code from successful running and de-
bugging, it is better to stick to the “no errors signalized by the PyDev editor” rule. In this way you can
avoid many time-consuming issues. All the standard menus are derived from bpy.types.Menu class
and have “ MT_” symbol in the middle of their names. All the standard panels are derived from
bpy.types.Panel class and have “ PT_” in their names. They also have prefixes, written in capitals,
which denote the windows (spaces) where they are used. For example, a class named
bpy.types.VIEW3D_MT _object represents the Object menu from the 3D View window.

Nearly all fields of the bpy.context (bpy.types.Context class) are copied into the bpy.pypredef file from
the fixed text that | put into the pypredef gen.py script. This is a specific object: its field set changes,
depending on the window (Blender screen area) from which the Python script is invoked. Some fields
are available only in the 3D View, other in the Properties window. | placed in the header file all the pos-
sible fields and noted in the comments their eventual window dependencies (Figure 6.1.6):

When you hover the mouse over a class
field — PyDev displays its declaration

v

bpy.context .IE.E.S'."I

: This field is available only for the scripts
] /_ that runs in the Properties window context.
: (This window in the Blender developers’
types.Mesh F:?"-'”d at: bpy slang is called Buttons window)

v
mesh = types.Mesh #*Buttons windows only™ (read enly)
Press 'F2' for focus

bpy.context.object]

types.Object Found at: bpy __|When there is no note in the asterisks
A/ (“*...*”) in the comment, this means that the
object = types.Object® (read only])f |field is available in all screen contexts.

Press 'F2' for focus

Figure 6.1.6 Opening the PyDev - PYTHONPATH pane

o After every update of the pypredef files, update also PyDev internal info, as described on page 143

Copyright Witold Jaworski, 2011-2019.

142 Appendices

6.2 Enabling Blender API code autocompletion in a PyDev project

When you start in the PyDev a new Blender add-on project, add to the PYTHONPATH variable the path to the
doc\python_api\pypredef\ directory. This folder contains declarations of Blender APl methods, classes and con-
stants (see page 139).

To do it, open Project>Properties (Figure 6.2.1):

File Edit Refactoring Scurce Mavigate 5Search | Project | Pydev Run Window Help

S DO i | OpenProject Quick Access| |

Close Project

5 | | @ PyDev | %5 Debug

ackag... object_boolea = Qutline
£ PyDevPackag.. 22| = O bject_bool = 5 = Outline 532 = g
1S r e 4 Build All Ctrl+B A
BES|leR v | 19 |l BuEAL = Vst o e 7
Fl=3 Booleani‘ 1. Highlight f ‘E S1m B"'fld PmJElCt |typeﬁlterta¢
a2 src . the project | .- .- ..., Build Working Set 3 @ main
B @ object b z = Clean...

. L
b €@ Python 3.7 (64-bi ... thon: Build Automatically

main () | Properties ﬂ

1 v
s
H
B
[<]

0 =]

N—|2. Open its
properties

Figure 6.2.1 Opening project properties

In the properties dialog, highlight the PyDev — PYTHONPATH section, then select its External Libraries tab
(Figure 6.2.2):

1. Highlight PyDev - PYTHONPATH
this item

- The final PYTHOMNPATH used for a launch is compfsed 2'. Select
Builder this tab

Project Facets

Project Natures

Project References External libraries (source folders/zips/jars/eggs) outside of the workspace.

PyDev Winterpreter/Gramm
| PyDev - PYTHDNPATH| When using variables, the final paths resolved must be filesystem absolute,

Refactoring History

} Changes in external libraries are not monitored, so, the 'Force restore internal info
Run/Debug Settings should be used if an external library changes.
Server

. Task Repository | Add source folder |
Task Tags |
- Validation

WikiText ' Add based on variable |

Add zip/jar/egg |

| Remove |

Force restore internal info

| Restore DefauHS| | Apply

|Appl}'and Close| | Cancel

Figure 6.2.2 Opening the PYTHONPATH form

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 143

Initially there are no external libraries (the list in this tab is empty). Click the Add source folder button to add a
directory to this list, and in the dialog box select the doc\python api\pypredef folder (Figure 6.2.3):

The final PYTHOMNPATH used for a launch is composed of the paths
defined here, joined with the paths defined by the selected interpreter,

[Source Folders | & Eternal Libraries | @ String Substitution Variables
External libraries (source folders/zips/jars/eggs) outside of the workspace.

Wh , bles the final path bved must be filesvstern abeolut 1. Click this button to add the
En using varaoles, erna aths resolved mu e Tile EIMm apsolute, .
g g P = Blender API headers directory

Changes in external libraries are not monitored, so, the 'Force restore internal info'
should be used if an external library changes.

Initially there are no §Add source folder
. .
external libraries EEE—— dd zip/jar/egg

Add based on variable

1 Remove

@ = I | . C\Program Files\Blender\dac\python_api V| [} Search python_api

Organize * Mew folder EEE 4

.. Program Files MName Date modified Type
i 7-Zip

. pypredef o 2019-05-1223:52 File folder

. Blender — - i
280 L pypredef-tmp ke 2019-05-12 23:52 File folder
N 2

. doc

2. Select the doc\python_api\pypredef|

= pﬁho"‘;;i folder (see. pages 39 and 139)
. pypre

| pypredef-tmp

. Blender-2.69 wlla

Folder: | pypredef

Select Folder Cancel

Figure 6.2.3 Declaring the pypredef folder as the Python “external library”

When the Blender API headers folder has appeared on the external libraries list, click the Force restore
internal info button. According its description, you should do this after every change made to the header files:

The final PYTHOMNPATH used for a launch is composed of the paths
defined here, joined with the paths defined by the selected interpreter.

[Source Folders | & External Libraries | & String Substitution Variables

External libraries (source folders/zips/jars/eggs) outside of the workspace,

‘When using variables, the final paths resolved must be filesystem absolute,

.
i Changes in external libraries are not menitored, so, the 'Force restore internal info'

Eshould be used if an external library changes.
................................... 3o mmmm e mmm e mmoeo o

& C\Program FiIes\BIender\doc\p;;fthon_api\pypredef Add source folder

I
: Add zip/jar/egg

. : - Add based on variable
Click this

/ button Remaowve

¥ Then - confirm
Force restore internal info | changes —\

Restore Defaults Apply

Figure 6.2.4 Refreshing internal PyDev information and closing this dialog

Finally, click the Apply button to save these changes.

Copyright Witold Jaworski, 2011-2019.

144 Appendices

Once the project configuration is updated, add to your script appropriate import statement. Usually you start by
importing the bpy module. Then, when you type a dot after a class variable name, PyDev will display the list of
the class fields and methods (Figure 6.2.3):

= eclipse-workspace - Boolean/src/object_booleans.py - Eclipse IDE -

File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help

I 2@ - 0~ %@ 9~ import appropriate] " ™ Quick Access| || {5 | [PyDev | 4 Debug

irst!
[PyDev Packag.. 32 = B [F] “object_booleags 53 module, first! = O 5= Outline &3 = 8
Gl w CRER : =
. El =‘>| o o > The sifplest script Then as usual — PyDev proposes i
4| Boolean g |rrs methods and fields when you type
4 @éc et bool - dot after a class variable ne 6, column 2
> §f] object_booleans.py = _ PRy
) . —“def main () : - opy
Python 3.7 (64-bi ... thon: .~ —
> @ ython (! on B & cube = bpy.data. "g} main
87 o BEIRTLE). © metaballs
- main () Q movieclips
& node_groups
< objects
& paint_curves
O palettes
& Console 53 © particles

@ path_from_id{property)

@ path_resclve(path, coerce)

@ pop(key, default)

(] property_overridable_static_set{property)
(& property unset(property)

Mo conscles to display at this time.

Press Ctrl=Space for temp

Figure 6.2.5 Blender API code autocompletion — on placing a dot after the class variable (or)

You can also use the - shortcut.

To learn more about PyDev autocompletion — see page 41.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 145

6.3 Importing/linking an existing file to a PyDev project

You can copy (import) to your PyDev project an existing file from your disk. Just “grab” it with mouse (for exam-
ple — in the File Explorer window), then drag and drop into your Eclipse project (Figure 6.3.1):

=) eclipse-workspace - Boolean/src/object_booleans.py - Eclipse IDE = B
File Edit Refactoring Source MNavigate Search Project Pydev Run Window Help
N g DM -0 QoA G Quick Access| || (5 |[@ PyDev | 45 Debug
[% PyDev Package Explorer 52 = O [P object booleans 53 = 0 gEou 2 = 0
BEGlen v | | o1 R T
4 1= Boolean The simplest script type filter text
4 [src y
) — by
b [F] object_booleans.py import bpy @ mp:;n
(= blender_file

“def main ():

> €2 Python 3.7 (64-bi . Tipythor

Drag this file with mouse and
drop it into the project folder

File Home Share Wiew : v @
@ * T L. v ThisPC » Documents » Other: v & Search Other 0
1 -
. My ICC Profiles ~ Marnz 1 Date modified Type
|| My Kindle Books ¥ .
|i§) boolean.blend 2019-05-15 11:41 BLEND File

. My Kindle Content

.. Miestandardowe szablony pakietu (
. Other
L Outputd2

Figure 6.3.1 Importing an existing file to the project folder

It creates a copy of this file in the selected folder of the Eclipse project (Figure 6.3.2):

File Edit Refactoring Source Mavigate Search Project Pydev Run Window Help

Tk 1ok I R R A=l R dE Rl EECR R = Quick Access| | 5 | | @ PyDev | 45 Debug
[PyDev Package Explorer 53 = O [F] object booleans i3 = 0 g=ou.® = 0
E%|‘i’:{::b = S orrn - - GlaZ:E‘i:D: -
4 [Boolean The simplest script type filter text
4 [src 4
. — by
i+ [F] object_booleans.py l:l.mpart bey D mp:i'n
4 = blender_file

= d

A copy of the original file —

7% boolean.blend (<
: double click to open in Blender:

print (cube.name) :

File Edit Render Window Help - t Modeling Sculpt Scene

W, Object Mode v Termnplates

Light
Edit

v 1!) Elendfile Data
Filenarne

File Has Unsave

Figure 6.3.2 A test Blender file, attached to a PyDev project

Copyright Witold Jaworski, 2011-2019.

146 Appendices

In addition to attaching files, you can also link to the Eclipse project any file located in a different directory on
your disk. However, in PyDev projects you have to do it in a less straightforward method than the “drag and
drop”. Highlight the target folder in your project and in the context menu click New >File (Figure 6.3.3):

5 Project Explarer 53 = B 4% Debug 2

/_ Click on the target folder, and ferver [Python Server]

4125 Boolea invoke the New>File command ninated=unkn B\qn
| Mew J Project...
[= blen Go Int
4= prey ointo ||_<? File
@ C Show in Local Terminal b | C9 Folder

b Pyth
Copy [F] PyDev Module
Paste Bt PyDev Package

Figure 6.3.3 Invoking the FileNew command

Enable the Advanced option in the New File creator dialog, and mark Link to file ... option (Figure 6.3.4):

File
€3 Mame cannot be empty.

Enter or select the parent folder:

| Boolean/src

B e o
41— Boolean
= blender_file
[= prev
[+ = src

File name: Expand Advanced
section

<< Advanced

' [W]Link to file in the file system

Browse... | Variables...

_ Mark this option

Click here to select
the file to be linked

Figure 6.3.4 Selection of the source type

' From unknown reasons PyDev ignores the default Eclipse settings (from Window ->Preferences:Workspace\Linked Resources). According
these settings after receiving a dropped file, PyDev should ask whether to import (copy) or link this file.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 147

In the file selection dialog box select the source file (Figure 6.3.5):

T | =« scripts » addons » Search addons 0

Organize « Mew folder 3= - m (7]

-~

| Documents Mame Date modified ™

& Downloads = mmmom -z
Br mesh_vertex_tools.py 2015-09-06 13:50

E’ object_add_parent.py 2017-09-07 21:57

W Music

= Pictures

B Videos

&, SYSTEM (C)
= LENOVO (D)

object_booleans. 2019-06-01 20:15
@ J = : P‘_-"= Select the sourcel———————
| object_intersection.py file and click Open |°13-09-0612:50

| object_mdeform.py 015-11-07 16:52 o

v £ >

File name: | object_booleans.py . s

Figure 6.3.5 Selecting the source file for linking

When you click Open, you come back to the creator dialog (Figure 6.3.6):

File

Create a new file resource.

Enter or select the parent folder:

| Boolean/src

B G D
4 = Boolean
= blender_file
[= prev
[+ = src

File name: | ohject_bocleans.py

PyDev has placed here the

path to your source file
Link to file in the file system

| ‘Blender 2,80 scriptshaddonshobject_booleans.py | | Browse.. | | Wariables...

Now you can click Finish
to complete this operation

Figure 6.3.6 Filled New File creator form

Copyright Witold Jaworski, 2011-2019.

148 Appendices

Click the Finish button in the creator window. In the result, PyDev will create a shortcut (link) to the original file.
In this way you can easily connect to your project an existing Blender add-on, even when it is already installed
in the Blender add-on directory (Figure 6.3.7):

File Edit Refactoring Source Mavigate Search Project Pydev Run Window He

N-FRis|proEz TSRS

5 Project Explorer E3 = O | % Debug [F] object booleans 2
= % | % - =
4125 Boolean Boolean opsrator ({ver. 0.5)
& [src o
[}@ object_booleans.pg.r|<— This is not a file, but a link to the source file, _
o (= blender file located in a completely unrelated folder boeratl
- "description": "Performs
4 prev] "suthor™: "Witeld Jawvorsi
A object_buolea.ns.py npersion®: (0, 59,
= Python 3.7 (84-bi ... thon3W\pythor Whlendsr": (2, 80, 0),
"location": "Object > Bo

Figure 6.3.7 File link, added to a PyDev project

As you can see in figure above, file links icons in Eclipse are marked with additional arrow at their right, lower
corner. When you open properties of this link, you can read the full path to the source file. You can also alter this
path there (Figure 6.3.8):

Resource Click here, if you
want to redirect this|
Path: /Boolean/src/object_booleans.py link to another file
Type: Linked File l
Location: ChUsers\mehAppDatatReaming' Blender Foundation\Blender\ 2.8 scriptshaddons Edit...

‘object_booleans.py
Resolved location: | Chlsers\mel\AppData\Reaming\Blender Foundation' Blender 2. 80 scriptshaddons\object_booleans.py |
Size: 2710 bytes
Last modified: 1 czerwca 2019 20:15:43 [Source file location|

Figure 6.3.8 PyDev Properties window of a linked file (opened by clicking RMB'

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 149

6.4

Blender uses its own, embedded interpreter for executing Python scripts. You can debug them using the built-in,
standard Python debugger. Unfortunately, this tool works in the "conversational" mode, in the console. Thus, this
is not a user-friendly solution.

Details of debugging Blender scripts

You need so-called remote debugger, to follow the script execution in an IDE such as Eclipse. This solution was
originally invented for debugging programs that are running on another computer (Figure 6.4.1):

I_‘

SL A "I-TCPlIP' mbm -] = % - 5+ [Shck Aooem

Fir Eow Felmtoneg Lowce Heegeie Sesch Poget Bder Bun Windos
= =R N R B3 e

wh

(L

¥ object bookear I

Wabse

hebal vaable

Pdzre Tupe Hone

et [T, _Siog_"s " Budt-an fuse
A Colbios el e mivksp s Bookbnti
wiz \nloolemn cpmator ves 0031 P

1 Deburg Servtr [Pybhe Servnn]
4 unkreram

o g WL Thwad - pid 800 d,

smadulee (ot b

sebcad[_nd_py 18]

AREOET DRV

L def Exolsan_sporation {tocl)=z

sebcad [omp. gy 1% & aar CLhii e e ek et Bec i
#:h.-u pydny_debug p B e _ SempriaFibelider: «_rapen_mmmportil ool S
ubn frun.py= 108 _mama_ iz olyec?_booisant
ol Dot g.v.- w 1 . parkage ar
This button starts » _ipe_ WiouleSiott: bl ot nirvets thpl o
W _pydee_ricp st berak Funciior dencton _pyde:_ricp, st bensk ot Gel
the server e Funrmon clancion boskes, o
w bpr adle < gl gy’ b
File Edit Refactoring Sourcgd Mavigate Search : - Ak R e Ul
. . . . egister Run Script
o ﬁ h o E o '# lF ﬁ Q o # h ﬁ ¥ LI I

Script pydev_debug.py:

E E) Console 53 |_:-_ Pmﬂﬂs

Debug Server

it starts the
client process!

import pydevd /_

if trace: pydevd.settrace()

Debugy Server at port: 5678

Once run, the server is listening
the network traffic all the time

Figure 6.4.1 Tracing the Blender script execution in the PyDev remote debugger

In the IDE (like Eclipse) you have to run the server process. It starts "listening" to eventual requests from the
debugged scripts. These requests will be sent by a remote debugger client, activated in the code of the tracked
script. The communication between the remote debugger client and its server is realized through the network.
Long ago, someone noticed that you can also run these two processes on the same machine. They exchange
data using the local network card of the computer. Conceptually, this corresponds to a situation, where two per-
sons are sitting in the same room and talking to each other via a phone. Fortunately, the programs are "stupid"
and do not complain that they have to communicate in such a strange way. From the user point of view, this
solution works without flaws. Just beware the firewalls. In the PyDev, the debugger client code is in the pydevd
Python package. In the Run.py script template | use the pydev_debug.py auxiliary module (see page 160),
which imports and initializes PyDev debugger client. (Run.py is the “testbed” of our scripts — see page 53).

Apart the button shown in previous figure, you can also start the remote debugger server using the
PyDev->Start Debug Server command, (Figure 6.4.2):

Figure 6.4.2 Commands that control the PyDev remote debugger server

File Edit Refactoring Socurce Mavigate Search Project | Pydev | Fun Window Help
N-EHR O S8 ® %0 Q-i|® Auachioboes 5 -
. +# End Debug Server
[F] object_booleans 53 bpy ! 8
= L | 55 Start Debug Server
% = Do not confuse this
Boolean operato|fémote server button (% Globals Browser
il L with the local debugger!

Copyright Witold Jaworski, 2011-2019.

150 Appendices

What to do, when these PyDev commands do not appear! on the toolbar nor menu, as in Figure 6.4.2? Some-
times the Start/End Debug Server commands can be just turned off in the Debug perspective! To enable them,
use the Window 2>Perspective >Customize Perspective command (Figure 6.4.3):

Run | Window | Help
] New Window 2
Editor * E | @ PyDev |45 Debug
Appearance r
= i e bpr.. 2 O
Show View P e = —
Perspective v | [/ Open Perspective J
Mavigation L | Customize Perspective...
Preferences Save Perspective As...
Reset Perspective...
e act
Close Perspective
not Close All Perspectives

Figure 6.4.3 Opening the Customize Perspective window

In the Customize Perspective window, open the Action Set Availability tab (Figure 6.4.4):

Tool Bar Visibility | Menu Visibility | Action et Availability | Shortcuts

Select the action sets that you want to see added to the current perspective (Debug). The details field identifies
which menu items and/or toclbar iterns are added to the perspective by the selected action set.

Available action sets: Menubar details: Toolbar details:

[] Profile

F]

|PyDe'.r Debug

PyDev

ception Breakpc
[+ PyDev Maigate

L

Pydev

e Attach to Process
End Debug Server
5% Start Debug Server

P PyDev Debug
¢ Attach to Process
+# End Debug Server
5% Start Debug Server

A

>
1
L !
|Enab|e this action set |

® | Apply and Close |

£

Figure 6.4.4 Enabling the PyDev remote debugger controls

Find in the Available action set list (on the left) a set named PyDev Debug. Just enable it and then Apply and
Close this dialog. The Start Debug Server and End Debug Server will appear in your current perspective.

When | prepared this book, the Start/End Debug Server buttons were already visible in the Debug perspective. |
did not have to add this action set manually, as described above. | suppose that this issue may be related to the
way in which you have added the Debug perspective to your project. (However, | am not sure).

¢ By the way, you have learned how to customize Eclipse project perspective ©.

" When | installed PyDev for the first time, such a thing just happened in my Eclipse. | spent whole day browsing through all the PyDev
documentation and the user posts from various Internet forums. In parallel, | continually searched various Eclipse menus, looking for these
two missing commands. In the end, | found them. To save you from similar troubles, | am describing here the solution.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 151

Let's take care now for the debugger client. Among files that accompany this book you can find the Run.py
script (it is accompanying by the pydev_debug.py file - see page 39). Load Run.py into Blender Text Editor win-
dow (see page 47) using the Text>Open command. Figure 6.4.5 shows its initial contents:

Scripting

Wiew Text Edit Format Ternplates E = Run.py LD — é

n

CRIFT = "C:/Documents and Settings/<your profile=/workspace/<your script=.py

FYDEVD PATH='-=your PyDey folders,

(S o L Y R I S I

pydev_debug pydey

10 pydev.debug(SCRIFT, PYDEVD _PATH, trace = True
11

Figure 6.4.5 Auxiliary code for running user scripts in Blender

To debug your script, you have to customize the two constants in this code: SCRIPT and PYDEVD_PATH. But
first, let’s check if the Python in Blender can import the pydev_debug module, as in the Run.py script. (Techni-
cally speaking: let’'s check if the pydev_debug.py file is present in one of the Blender PYTHONPATH directories.
One of them is the directory that contains the Blender executable file). You can “mimic” this line of the code in
the Python Console, as in Figure 6.4.6, and make sure that you have got similar response:

~ Console Autocomplete lcon Wiewer

Of course, your path
import pydev_debug can be different
p

v_debug
pydey_debug' from

Figure 6.4.6 Checking, if Python in Blender can find the pydev_debug module
If the import statement of this module causes an error — check carefully in the Blender Python Console which

directories are listed in its sys.path. Then place the pydev_debug.py file into one of these folders.

In the next step, assign to the SCRIPT constant the full path to your script file. You can easily copy it from the
Eclipse properties window for this project item (Figure 6.4.7):

=
[# PyDev Package Fx.. 53 O Resource
=

Open this item| & _"_u=:>___>
4 properties
a [src
- |[F] object_booleans.py HD
4 [~ blender_file

Path: /Boolean/src/chject_booleans.py
Type: File (Python Filg)

Location: C:\Users\me'eclipse-workspace\Boolean\src\object_booleans.py =T

Size: 563 bytes
Last modified: 16 maja 2019 14:55:28

#) boolean.blend
. 2@ Python 3.7 (64-bi ... thon3Typ

E w MWiew Text Edit Formmat Temnplates E W Run.py

Copy this path and paste it
as the SCRIPT value.

CRIFT = "C fmefeclipse-workspace /Booleanssre/object booleans.py"

Do not forget changing all “\” into “/”

Figure 6.4.7 Typing the full path of the script to be run

Copyright Witold Jaworski, 2011-2019.

152 Appendices

The last element you have to update in the Run.py code is the path to a PyDev subfolder named pysrc\ (the
PYDEVD_PATH constant). This is a more difficult, because this subfolder location can be different in various
PyDev versions. The simplest way to find it in your PyDev is to read its path from the PyDev PYTHONPATH. To
do it, open (as | am showing in section 5.6, on page 134) the Run Configrations dialog, and read it from the
PYTHONPATH directories listed in the default running configuration (Figure 6.4.8):

Create. manage. and run configurations @

e = b, - i
Ll |;I|é} +@ 5 x' B Mame: | Run with external Python

@ Main ™ |H= Arguments\l A Interpretea f,:;"" Refresh\l -] Environment\l)
¥ Grunt »
Gulp Project
HTTP Preview
@’ IronPython Run Boolean Browse...
a7 IronPython unittest i
a7 Jython run Main Module
P Sworkspace_locBoolean/src/object_booleans.py} Browse...

1. Select the run configuration
that we have previously pre-) .
pared for the “classic” Python PYTHOMPATH that will be used in the run:

(see section 5.6) Chlsers\me\.p2\poolpluginsiorg.python.pydev.core 7.2.1 2ﬂ1904251?21\pysrc\]p}rde
MUsersymeheclipse-workspacelBoolean'sr

MUsersymelDocumentsiKsiazki (napisane)fclipse\Data\doc\python_apitpypredef
“\Program Files\Pythe=220ll-

“\Program Files\PytH{2. Find this pysrcl directory in File
\Program Files\Pyt Explorer and make sure that it contains
; |the pydevd.py file

43 PyDev Googlg App Run

Aep Python Run 3
EF Run with external Python |

éj Python unittest

Home

AERE AR REAllt

View

Share

- "|"| .|C:\Users\mE‘a.pE‘-Lpl:u:ul\plugir1s‘u:urg.py‘th-:un.p}rde-.r.cnre_?.l.1.2ﬂ19|}4261?21\py5rc

©

A
| Documents ~ Mame E . Date modified Type
& Downloads (i p}rue-pr pysrc.py 2U1B-UL-20 1 XU FY Fle
J Music 3. Copy this path and g p}rdev run_in_console.py 2018-05-0513:38 PY File
Sl Pictures | PyDEVD. PATH valug. ,M',F}f@,ﬁ:t@?ﬂ}ﬂ'i Py 2019-02-031310__ PY File
& Videos @ pydevd.py ! 2019-04-26 1417 PY File

g pydevd_file_utils.py 2019-04-261417 PY File

iy SYSTEM (C:)

pydevd_tracing.p 2019-04-26 1417 PY File

forg. python. pydey . core 7,21, 2019042617

Do not forget changing all “\” into “/”

I e B R 8

1II pydev . debug (SCRIFT, PFYDEWD PATH, trace = True
11

Figure 6.4.8 Determining the PYDEVD_ PATH

Unfortunately, you cannot copy directly from the Run Configurations properties the full path of the pyscr\ directo-
ry. You have to open File Explorer and manually “walk along” the path displayed in Eclipse. Make sure, that the
final pysrc\ directory contains the file named pydevd.py. (This is the remote debugger client module, used by the
pydev_debug.py script). If so — copy the full path from the File Explorer address field and paste it as the new
PYDEVD_PATH value. Then change in this string all backslashes (“\") into slashes (“/”).

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 153

Before debugging a script, set in its code at least one breakpoint, because otherwise it will be executed from the
start to the end without stopping in the debugger. If you wish to trace your code from the very beginning, set the
breakpoint in the line that imports the bpy module (Figure 6.4.9):

[F] object_booleans &3 = B

/533-; Set in your script at least one breakpoint (double click D on

gray strip that runs along the left edge of the editor pane)

ir import bpy

“'def boolean operation (tool):

= rrrParforms 8 Boolean operatien on the active object

(=]

77 - .
FgUumencs.

Figure 6.4.9 Placing the breakpoint (at the beginning of the script code)

Then go to the Debug perspective and run the PyDev remote debugger server, so it starts listening eventual
requests sent via local network (Figure 6.4.10):

Click this button to

File Edit ;uer;verthe debug . Mavigate Search Project Pydev FRun Window Help

35 De.. I3 Pr.. & Se = O [F] object_booleans 52 T
| - Sororn Do not use similar
= te-r oe_.__ . |button of the local

4 ¥% Debug Server [Python Server] SooLssn sEEsaEes Hdebugger!

-| Debug Server
- I A dimport bpy
x ... 80 the server process starts listen-
ing to port TCP 5678...
Bl Console 32 [Probl

Debug Server

Debug Server at port: 5678

Figure 6.4.10 Starting the PyDev remote debugger server

You can do it using the PyDev>Start Debug Server menu command (see page 150) or by clicking the “bug”
toolbar button with small “P” letter (Figure 6.4.10). Just do not click by mistake the larger “bug” button of the
local debugger! (Note that its icon is larger, without any letter).

When the server is listening, you can run the client process. It is invoked by the customized version of the
Run.py script (I described its modification on previous pages of this section):

Edit Format Templates E Fun. py 4 legister RFun Script

CRIFT C /meseclipse-wo

5 PYDEWD PATH='C

pydev_debug pydey

9 pydev.debug (SCRIPT, FYDEWD_PATH, trace
Figure 6.4.11 Starting the script to be debugged (with the remote debugger client)

Just click the Run Script button in this Blender window (you can find it on the right side of the window header).

Copyright Witold Jaworski, 2011-2019.

154 Appendices

Run.py loads the script located at given path (the path in the SCRIPT constant) and executes its main code.
While this code is running, Blender window is “frozen”.

But just click into Eclipse, to activate its window! After a few seconds you will see the debugger execution line at

the first breakpoint (Figure 6.4.12):

4 o MainThread - pid_2936_id_37388653191;
=module> [ohject_booleans.py:d]
debug [pydev_debug|py:38]

<muodule> [run.py:g]
p Debug Server

You can see our script on
the top of the Python stack

Figure 6.4.12 The first breakpoint of the debug session

File Edit Refactoring Source Mavigate Searc
' . : ‘ ‘ [
Am Bifio B 5wk
:ﬁ;; Debug &7 |Debugger has stopped at the first

breakpoint and is waiting for further
commands

4 % Debug Server [Python Server]

4 {72 unknown

h Project Pydev Run

Window Help

Bigr 0O~ Qi & v

¥ dimport bpy

“'def boolean operation

FrorT,

[tool) :

L

bpy.ops.object.modifier add(tcype='E

On the left side of the script editor window you can see the Debug panel. It displays the current state of the Py-
thon call stack. In the figure above you can see that the execution started in run.py module (this is our code in
Blender Text Editor). At its line 9 it calls the debug() procedure from pydev_debug.py. It loads (in its line 38) the
script object_booleans.py, which you can see in the Eclipse text editor. At this moment it waits in the breakpoint

at its line 4. Such information can be useful when

you are building a solution from several Python files.

While debugging the script, you will frequently check the current state of its variables. For this purpose, PyDev

provides the Variables pane (Figure 6.4.13):

— O x=Variables 33 Initially you will see the global variables. They are H ¥ 7 O
created automatically by the Python interpreter
Mame /_
T . @ Globals Global variables
| [@ _builtins_ dict: {'_name_" 'builtins', '_doc__" "Built-in functio...
= _ cached__ str: Ci/Users/fne/eclipse-workspace/Boolean/src__p...
* _doc__ str: WnBooleah operator (ver. 0.0174n
= active oF o _ file_ str: T/ Users/mefeclipse-workspace/Boolean/srch\obj...
T » @ __loader__ SourceFileLogder: <_frozen_importlib_external.Source...
not affect *_name__ The value from the highlighted line is
= _ package__ also displayed in the bottom pane (just
JLEAN* @ _spec_ to have more sprace for its ex:i1mination) ‘object_booleans, I...
Iier="Boocless - @ _pydev_stop_at_break function: <function _pydev_stop_at_break at (e000000...
1"] .object =
15="'DATA', m dict: {' mname "': 'builtins', ' doc ': "Built-in functions,
> £ >

Figure 6.4.13 The Variables panel

Variables panel is divided into the list with names and values of the global and local variables, and the details
area. In the details area PyDev repeats the value of the variable highlighted on the list. | think that it can useful

for checking longer string values or lists.

Programming Add-Ons for Blender 2.8 — version 2.0

www.airplanes3d.net

Chapter 6 Others 155

When the variable contains a list or object reference, Eclipse displays a triangle (I>) at its name. You can click it,
to expand the list of its members (Figure 6.4.14):

(x)= Variables Click this triangle to expand the| (%= Vanables (i :
/EL area object members Members of the area object:

Mame Mame

= JLR e e] Ares <bpy struct Area at 000K

[@ bl_rna Context: <bpy_s T @ bl_mna Area: <bpy_struct, Struct("Area")>

- @ blend_data BlendData: <bpy » @ header_text_set bpy_func <bpy_func Area.header

- @ collection Collection: <bpy = height int: 195

» @ depsgraph Depsgraph: <bp - @ regions bpy_prop_collection: <bpy_colled
= edit_chject MoneType: Mon L @ rna_type Area: <bpy_struct, Struct("Area")=

. @ edit_texd Text: <bpy_struc = show_menus bool: False

» @ editable_baszes =class 'list'>: [by L p @ Spaces x Value of this field has been
= editable_bones MoneType: Mon . @ tag_redraw changed in the last executed line
= editable_gpencil_l: MoneType: Mon = type ctr TEXT_EDITOR
s aditabkle anencil A BlanceTimmes Ban i [T e TCWT CRITAD

Figure 6.4.14 Browsing the contents of an object

The fields of a class can contain references to other objects (larger green dots). When their values are of one of
the basic Python types (str, bool, int, ...), they are marked with smaller dots. PyDev highlights in yellow the
fields/variables that have been changed in the last executed code line.

In the Variables window you can also alter the value of a variable. Usually you will simply type it in the Value
column (Figure 6.4.15):

. X . Type simply True (instead
To edit this value, cllckljlnto its field 0%/ Y ") (
rna_type Area "~|3|j_itl".l-:t Struct("Area")= rna_type —lﬁa <bpy_struct, Struct("Area
= show_menus bool: Fals I = show_menus True I
Tpaces bpy_prop_collection: <bpy_collect spaces bpy_prop_collection: <bpy_collect
tag_redraw bpy_func: <bpy_func Area.tag_red tag_redraw bpy_func: <bpy_func Areatag_red

Figure 6.4.15 Altering the variable value

You can also change them in the detail area (using the Assign Value command from its context menu). Enter
the new values in the native Python syntax: True, False, 1, text, ... Do not mimic the “type prefix” (“bool: True”)
you can see in the unaltered variable fields. After executing the current line, PyDev will also highlight in yellow
the variables that you have changed manually.

The Expressions panel is more convenient for tracking the value of a single object field. You can add it to the
current perspective using the Window >Show View 2Expressions command (Figure 6.4.16):

Window | Help
Mew Window - - - - PyDer Debug
Editor r
fariables |64 Expressions 3 Br
Appearance »
[I Y —— Mame Value

Show View b | % Breakpoints Alt+Shift+Q, B ga Add new expression
Perspective » | B Console Alt+5hift+ 0,
Mavigation * e

& ErrorLog %

" Preferences 6o Expressions %
0= Outline Alt+5Shift+0Q, O

Figure 6.4.16 Adding the Expressions panel

Copyright Witold Jaworski, 2011-2019.

156 Appendices

The Expressions pane layout is similar to the layout of the Variables pane: it contains the list of the expressions
and their current values. There is also the detail area, showing in a larger field the value of highlighted list item.
Unlike in the Variables pane, Expressions allow you to evaluate any Python expression, at every step of the

script execution (Figure 6.4.17):

{x)= Variables &< Expressions 37 |®g Breakpoints

Mame

————

Type (or paste) here the expression
that has to be evaluated... = =0

WYalue

b py.context.object. modifiers["Boolean"].object I

—
. and PyDev immediately
{x}= Variables &% Expressions 7 |®g Breakpo displays its current value = B
Mame Value
£Y "bpy.context.object modifiers["Boclean"].object” - - -»>MoneType: None

o0 Add new expression

Figure 6.4.17 Adding new items to the Expressions list

In the Expressions pane you can simply enter the variable name. However, it is more useful for tracking the
selected fields of an object. In the example above | am evaluating the object field of the object modifier named

Boolean. (At this moment this modifier belongs to the active object). | do it this way, because the modifiers
field returns an iterator instead a list, so you cannot examine its content in the Variables pane. (You can find the
bpy.context object among the global variables, see under Globals 2’bpy’>context. See yourself, what you can
do with its modifiers). Unlike in the Variables pane, you cannot edit the Expressions values.

e The Expressions pane is useful for examining the iterators contents, and other objects that you cannot
access via the Variables pane. In particular, it applies to all the Blender API lists.

The quickest way to browse iterator contents is the conversion into the classic Python list, using the standard

list() function (Figure 6.4.21):

(x)=Variables € Bxpressions 33 [pass the iterator you want to IR L e
examine as the list() argument...
Marme
| a2Y "list(bpy.context.object. modifiers)” <class 'list'>: [bpy.data.objects['Cube'l.modifiers["Boolean"], bp...
s @ 0 BooleanMadifier: <bpy_struct, BooleanModifier("Boclean")>
@1 BevelModifier: <bpy_struct, BevelModifier("Bevel")>
o len_ int: 2

g0 Add new expression

... S0 now you can easily
browse its contents

Figure 6.4.18 Browsing in the Expressions pane details of the modifiers stack

Of course, do not do it for a very long list. If you are not sure how many elements are in an iterator, you can

check it earlier, using the standard len() function.

In the Expression pane, as in Variables,

Mame
you also find the triangle (I>) on the left ’“‘;/Ii:t{hp}r.c-:.ntert..:.bject.m.:u:liﬁersj"

d =77

Click I:I to browse contents of the item [0]

<class 'list'>: [bpy.data.o

side of each complex data type. For
example - you can use it to examine the
contents of the objects that are returned
by the iterator (Figure 6.4.19):

[(a0

bl

#

0
@
]

L]

I
:
I
bl_rna Y BoocleanModifier: <bpy_s

BooleanMadifier: <bpy_s
debug_options set: set()
double_threshold float: 9.9%999%974752427
name str: Boolean

Figure 6.4.19 Examining details of an expression value

Programming Add-Ons for Blender 2.8 — version 2.0

www.airplanes3d.net

Chapter 6 Others 157

Another useful tool for the script debugging is the Eclipse Console panel. While debugging, it receives the out-
put from the Blender system console (see Windows>Toggle system console command in Blender menu).

What's more, it becomes interactive while the script is running. You can invoke there any command that will be
executed by Blender Python interpreter (Figure 6.4.20):

E) Console 2 | |2/ Problems L] | =% & = | ™ M~ = O
Debug Server

Z

s R

- ST

! |Commands that you are typing are in green
Cylinder /_

re mee -
CONTCeXT.ab]ec

abe)
\|Ble

-

c
|

nder (Python) responses are in black

Figure 6.4.20 Eclipse console while debugging a Blender API script

Of course, you can get the same information using the Expressions pane. However, in this console you can do
more — for example, call a method.

Although the Blender screen is “frozen” while the API script is running and looks like it was at the moment
you have clicked the Run Script button (see page 153), you can still control it using the Eclipse console.

For example - you can use any Blender command, invoking in the Eclipse console corresponding operator
(one of the bpy.ops methods).

When your script calls the print() method, then in the debug session you can see its results in both: Blender
and Eclipse console (Figure 6.4.21):

except KE Error:
boolean operation(bpy.data.obje E ¥
- . ass
» print { "bool coperation: Done!") 'HD Step over () E

£

B Console 23 |[®) Problems
Debug Server

B Console 22 |[* Problems

Debug Server

&

; When you execute this line, you 3: o1 . name
i will see its result in the console i
cool .name Cylinder
Cylinder bpy.context.object.name
bpyv.context.object.name Cube
Cube

bool operation: Done!

Figure 6.4.21 The results of the print() method in the Eclipse console

Also, when you encounter a runtime error (exception) in your script — the Eclipse console will display the same
complete information (Python stack traceback, error message) as it appears in the Blender console.

Copyright Witold Jaworski, 2011-2019.

158 Appendices

After executing the last line of your Blender script, the remote debugger steps into an auxiliary file that has load-
ed and run your *.py file (Figure 6.4.22):

File Edit Refactoring Scurce Mavigate Search Project Pydev Run Window Help

O~ Do B n NIRRT BiFE-0-Q-im 4!
3y Deb... 2 Pro.. &% Ser = B8 | [F] object_booleans [F] pydev_debug 33

Click Resume ()

4 5% Debug Server [Python Server] |to finish debugging
4 unknown cry:
4 B MainThread - pid_6640_id_8631932 :

= debug [pydev_debug.py:42]

= <module=f{run.py:10]

if script _file in sy=s.modules:

sys.modules[=script file] .unregi

except:

: pass

g | Debug Server) . .
imp.reload(sys.modules[script file]

else:

Your script has been removed from the stack)))
(compare this with Figure 6.4.12, page 154), : _ import_ (script_file)
and at this moment the debugger displays
the auxiliary file pydev_debug.py that has|----»
loaded and run your script (in this example it
was named object_booleans.py)

» Ery:
: sys.modules[script file] .register()
except:
: pass

Figure 6.4.22 Debugger screen after executing the last line of your script

On the first run it will be the pydev_debug.py auxiliary file, on the next — the other, standard Python module re-
sponsible for module import (“reloading”). Anyway, there is nothing to do here — so click the Resume button (or
press) to finish this debug session.

o Unfortunately, | did not find so far any “elegant” solution which would automatically resume execution after
the last script line and finish it without opening the next module in the debug stack.

When you do it, Blender screen “unfreezes”, and you will see all the changes made by your script to the current
scene. If you wish to revert them — just use the Undo command (-El).

Now you can change the script code in the Eclipse editor. To run/debug it anew, just click the Run Script button
in Blender (see page 153, Figure 6.4.11).

e You do not need to stop the PyDev remote debug server. (Keep it running all the time, once you have start-
ed it — as in page 153, Figure 6.4.10). Let it shut down when you close the Eclipse IDE.

o To reload the modified script in Blender and debug it again, just click the Run Script button in Blender (as
shown on page 153).

Once you have modified the Run.py code in the Blender Text Editor, as described in this section, you do not
need to change it anymore. You can keep this code in a test *.blend file attached to your Eclipse project (as in
page 145). All what you need now is its Blender Run Script button. Thus, in your Scripting workspace you can
minimize the Text Editor window with the modified Run.py code just to see its header with this button.

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 159

Finally, a note for all the Readers who use other languages than English: do not place in your API script any
character which ASCII code is higher than 127 (i.e. any character which is encoded as two bytes in the UTF-8
files). In the example below, a single character (“$” in this case) is enough to block the PyDev debugger. When
you try to execute the currently highlighted line, or resume the execution, nothing happens. Instead, you will see
a traceback and error message in the Eclipse console (Figure 6.4.23):

descr = getattr (bmesh.ops, id) > @ Globals Global variables
result = doc2definition(descr. |[doc) I = MSG_LEVEL int: 1
» printm"Hn”} T __ §§ o _IDENT str:
for key in ["declarsticn", "docstrip "returns"]: - @ _ builtins__ dict: {'_name_ " 'builting’, '__doc_
: if key in rlean-t.: ————————— f = cached str; Ci/Users/me/eclipse-workspace
; print((tev=="r1Presence of this single character causes an
I noT(Mreturns gag) f/.%ﬁ’“_ error in the PyDev code on each attempt to|eclipse-workspace |
< i_ T ! execute current line == Y
__________________ 1
& Consale i3 |,'_ Problems Bk Eﬁ =0 El@l #E~-9-= 0
Debug Server
Traceback (most recent call last): ~
File "_pydevd_b::d;eipydevd_cythD:_wi:32_37_64.pyx”, line 759, in _pydevd bundle.pydevd cython win32_ 37_&4.

File "C:/Users/me/.p2/pool/plugins/org.pycthon.pydev.core 7.2.1.201904261721/pysrch pydevd bundle‘\pydevd don

line= = linecache.getlines(filename)

File "C:\Program Files\Blender\2.80\python\lib\linecache.py",

line 47, in getlines

return updatecache (filename, module globals)

File "C:\Program Files‘Blender\2.80\python'lib‘\linecache.py",

line 137, in updatecache

lines = fp.readlines|()

File "C:\Program Files‘Elender\2.B80\python\lib\codecs.py",

line 322, in decode

(result, consumed) = self. buffer decode(data, self.errors, final)

UnicodeDecodeError:

'utf-8' codec can't decode byte 0xSc

in position 5138: inwvalid start bvte

Figure 6.4.23 PyDev error, caused by a national character (of ASCIl code > 127)

Fortunately, you can remove/replace such a character in a comment without quitting the current debug session.
Just fix it in the Eclipse editor (the same where PyDev debugger is highlighting the current line), then save this
script. PyDev automatically updates the saved file in Blender memory, and everything will start working properly:
Step Over, Step Into, and all others debug commands.

Copyright Witold Jaworski, 2011-2019.

160 Appendices

6.5 What does contain the pydev_debug.py module?

In principle, for tracking script execution in the PyDev remote debugger you have to add to your code just two
following lines (Figure 6.5.1):

import pydevd
pydevd.settrace ()

Figure 6.5.1 The code that loads and activates the PyDev remote debugger client

Of course, to have this code worked, you should add to the current PYTHONPATH the pydevd package folder,
before. Besides, this is just the first point from a longer “to do list” for such an initialization. Hence, these two
lines were expanded to a procedure named debug() (Figure 6.5.2):

""'Utility to run Blender scripts and addons in Eclipse PyDev debugger
Place this file somwhere in a folder that exists on Blender sys.path
(You can check its content in the Blender Python Console)

rr

import sys

import os

import imp

def debug(script, pydev path, trace = True):
"'"'Run script in PyDev remote debugger
Arguments:
@script (string): full path to script file
@pydev path (string): path to your org.python.pydev.debug* folder

(in Eclipse directory) Preparation of the received paths,
@trace (bool): whether to start debugging updating of the PYTHONPATH

script dir = os.path.dirname (script)
script file = os.path.splitext (os.path.basename (script)) [0]

if sys.path.count (pydev path) < 1: sys.path.append(pydev path)
if sys.path.count(script dir) < 1: sys.path.append(script dir)

1mportpydevd ”””””””””””””””””””””” 1Starts the debugger client |[-----------mmmmmmmmmmmmmmmmm oo !

iif trace: pydevd.settrace (stdoutToServer=True, stderrToServer=True, i
3 suspend=False) !

PTIITTITTII ST T oT oo TSosoooooooooooooooooooooos ! Emulation of the Blender add-on
;1f script file in sys.modules: 4’/_ handling: unregistering the previous
3 try: 3 version

3 sys.modules [script file].unregister()

} except:

3 pass §

i imp.reload(sys.modules[script file]) ‘/P,——-Exemmonoﬂheumyscnm

relse: 3

i __import (script file)

Ry T e ! Emulgtion of _the. Blender add-on
§ sys.modules[script file].register () ‘fr/—_-czg%:g registering the current
rexcept: !

; pass §

Figure 6.5.2 The pydev_debug.py script

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 161

| decided to separate the main startup code that runs the Eclipse script inside Blender into the pydev_debug.py
module. This module contains just single procedure: debug() (Figure 6.5.2). Such a solution allowed for
maximum simplification of the Run.py code — the script template, which you have to update for every new

project (see page 53).

e Place the pydev_debug.py module in the directory, which is present in the Blender Python path (i.e. in one
of directories listed in the content of sys.path). In Windows one of them is the folder that contains the
blender.exe file (see page 39, Figure 3.2.2), but it may be different in the Linux or Mac environments. Just
check your sys.path it in the Blender Python Console.

The whole Run.py code contains just a call to the debug() procedure, with following arguments:

e script. path to the script file that has to be executed;
e pydev_path: path to pydevd.py module (this is the PyDev remote debugger client);
e trace: optional. Set this named argument to True, when the script has to be traced in the

debuuger. Set it to False when you want just to run the script without any break. (When
trace = False, you can run this code without Eclipse — see page 149);

Notice (Figure 6.5.2) that the debug() procedure loads user’s script module using the import statement. It al-
lows for debugging Blender add-ons'. Before this import, debug() attempts to handle the previously loaded
module as the add-on, and to unregister it. If this attempt fails — no error is signaled (not every script has to be
a plugin). When the new script is loaded, debug() tries to register it as a new add-on.

e When you write a Blender add-on script, at the beginning implement the required register() and
unregister() methods. They will allow for properly handling of the Blender registration process, every time
you will click the Run Script button (see page 55).

" Blender loads the *py file of an add-on and invokes the register() procedure. (It is supposed that this required module method will register
all the API classes of this plugin). Consequently, Blender calls the unregister() method when the user turns the plugin off. While the add-on
is active, Blender creates the instances of the registered add-on classes, when they are needed. The pydev_debug.py script emulates this
behavior, de-activating, reloading, and then activating again your add-on when you click the Run Script button. However, it cannot help you
in the debugging of an installed Blender add-on. (Thais means an add-on that was copied into Blender addon directory and is visible in the
Blender Preferences window). You need to install your addon just to test the eventual plugin preferences panel (see page 99). Most of the
Blender addons do not need such a feature.

Copyright Witold Jaworski, 2011-2019.

162 Appendices

6.6 The full code of the object_booleans.py add-on

In subsequent chapters of this guide | have gradually created the complete object booleans.py add-on. The
fragments of its code are dispersed everywhere in this book. However, after so many modifications it is useful to
present the final result in "one piece". If you want to copy this text to the clipboard — beware of the tab spacing!
They are all removed, when you copy the code below directly from this PDF document. It is better to download
this script file from my page.

The script does not fit into a single page, so | decided to divide it into five parts. The first part is a header that
contains the GPL information and the auxiliary debugging statements, which are useful for testing the
preferences panel (Figure 6.6.1):

rr

Boolean operator (ver. 1.0)
rr

bl info = {

"name'": "Boolean operations'",
"description": "Performs simple ('destructive') Boolean operation on selected objects",
"author": "Witold Jaworski",
"version": (1, 0),
"blender": (2, 80, 0),
"location": "Object > Boolean",
"support": "TESTING",
"category": "Object"”,
"warning": "Still in the 'beta' version - use with caution",
"wiki url": "http://airplanes3d.net/scripts-258 e.xml",
"tracker url": "http://airplanes3d.net/scripts-258 e.xml",
}
DEBUG = 0
if DEBUG ==
import sys
pydev_path = 'C:/Users/me/.p2/pool/plugins/org.python.pydev.core 7.2.1.201904261721/pysrc’

if sys.path.count (pydev _path) < 1: sys.path.append(pydev_path)
import pydevd
pydevd.settrace (stdoutToServer=True, stderrToServer=True, suspend=False)

N

Continued on the next page...

Figure 6.6.1 The object_booleans.py script, part 1 (the declarations)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

http://airplanes3d.net/downloads/pydev2/object-booleans.zip

Chapter 6 Others 163

The next part contains the main code, which implements the core operation (Figure 6.6.2):

import bpy
import traceback

def boolean operation (tool, op, apply=True):

''"'"Performs a Boolean operation on the active object
Arguments:
@Qtool (Object): the other object, not affected by this method
@Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}
@apply (bool): apply results to the mesh (optional)

obj = bpy.context.object

bpy.ops.object.modifier add(type='BOOLEAN')

mod = obj.modifiers[-1]

while obj.modifiers[0] != mod:
bpy.ops.object.modifier move up (modifier=mod.name)

mod.operation = op

mod.object = tool

if apply:
if obj.users > 1 or obj.data.users > 1:

bpy.ops.object.select all(action='DESELECT")

obj.select set (True)

bpy.ops.object.make single user (type='SELECTED OBJECTS', object=True, obdata=True)
bpy.ops.object.modifier apply(apply as='DATA', modifier=mod.name)

INPUT_ERR = 'ERROR INVALID CONTEXT'
ERROR = 'ERROR'

WARNING = 'WARNING'

SUCCESS = 'OK'

def main (op, apply objects=True, cntx=None):
""" Performs a Boolean operation on the active object, using the other
selected objects as the 'tools'
Arguments:
Qop (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}
@apply_objects (bool): apply results of the Boolean operation to the mesh (optional)
@cntx (bpy.types.Context): overrides current context (optional)
@returns (list): one or two message parts: [<flag>, Optional details]

try:
if cntx == None: cntx = bpy.context
selected = list(cntx.selected objects)
active = cntx.object

if active in selected: selected.remove (active)

if active.type != 'MESH':
return [INPUT ERR, "target object ('%s') is not a mesh" % active.name]
if active.library != None or active.data.library != None:

return [INPUT _ERR, "target object ('%s') is linked from another file" % active.name]
if not selected: return [INPUT_ERR, "this operation requires at least two objects']

skipped = []
for tool in selected:
if tool.type == 'MESH':
boolean operation(tool,op, apply objects)
else:
skipped.append (tool.name)

if not skipped: return [SUCCESS]
if len(skipped) < len(selected):
return [WARNING, "completed, but skipped non-mesh object(s): '%s'"

% str.join("', '",skipped)]
else:
return [INPUT ERR, "non-mesh object(s) selected: 'ss' " % str.join("', '",skipped)]
except Exception as err:
traceback.print exc()
cntx msg = """
if 'active' in locals(): cntx msg += "occurred for object(s): '%s'" % active.name
if 'tool' in locals(): cntx msg += ", 'Ss'" %tool.name

return [ERROR, "%s os" % (str(err),cntx msqg)]

S

Continued on the next page...

Figure 6.6.2 The object_booleans.py script, part 2 (core code)

Copyright Witold Jaworski, 2011-2019.

164 Appendices

The next part contains the required API “framework”; the operator class. There is also another API class that
implements the pie menu (Figure 6.6.3):

from bpy.props import EnumProperty, BoolProperty

class OBJECT_OT_Boolean (bpy.types.Operator) :
'"'"Performs a 'destructive' Boolean operation on the active object
Arguments:
Qop (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']
@modifier (Bool): add this operation as the object modifier

rr

bl idname = "object.boolean"

bl label = "Boolean"

bl description = "Perform a Boolean operation on active object"

bl options = {'REGISTER', 'UNDO'}

op : EnumProperty(items = [
("DIFFERENCE', "Difference", "Boolean difference", 'SELECT SUBTRACT',1),
("UNION', "Union", "Boolean union", 'SELECT EXTEND',2),

("INTERSECT', "Intersection", "Boolean intersection", 'SELECT INTERSECT',3),
:I ’
name = "Operation",
description = "Boolean operation',
default='DIFFERENCE',
)
modifier : BoolProperty(name = "Keep as modifier”,
description = "Keep the results as the object modifier",
default = False,

@classmethod
def poll(cls, context):
return (context.mode == 'OBJECT')

def execute (self, context):
main(self.op, apply objects = not self.modifier, cntx = context)

return {'FINISHED'}

def invoke (self, context, event):

result = main(self.op, apply objects = not self.modifier, cntx = context)
if result[0] == SUCCESS:

return {'FINISHED'}
else:

self.report(type = {result[0]}, message result[1]

return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

class VIEW3D_MT Boolean (bpy.types.Menu) :
'"'"'"This pie menu shows Boolean operator options.
Invoked by the hotkey assignet to this add-on
rr
bl idname = "VIEW3D MT Boolean"
bl label = "Select operation"

def draw(self, context):

pie = self.layout.menu pie()
pie.operator enum(OBJECT OT Boolean.bl idname, property="op")

e

Continued on the next page...

Figure 6.6.3 The object_booleans.py script, part 3 (API classes)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 165

In this fourth part you can find the implementation of the addon preferences and the procedures that add and
remove the keyboard shortcut (Figure 6.6.4):

hotkey defaults = {"idname": 'wm.call menu pie',
"type'": 'D', "value": 'PRESS', "shift": False, "ctrl": False, "alt":False}

class Preferences (bpy.types.AddonPreferences) :
''"'This class provides the user pssibility of altering the keyboard shortcut
assigned to the Boolean pie menu

rro

bl idname = name

def on_update (self, context):
unregister keymap ()
register keymap ()

shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",
default=hotkey defaults["shift"], update = on update)
ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",
default=hotkey defaults["ctrl"], update = on_update)
alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",
default=hotkey defaults["alt"], update = on update)
key : EnumProperty(items = [('NONE', "None"”,"No hotkey'")] +
[tuple([chr(i),chr(i), "[%s] key" % chr(i)]) for i in range (65, 91)],
name = "Keyboard key",
description = "Selected keyboard key",

default = hotkey defaults["type"],
update = on_update
)
def draw(self, context):
row = self.layout.row(align=True)
row.alignment = 'LEFT'
row.separator (factor = 10)
row.prop (self, "key", text="Keyboard shortcut")
row.separator (factor = 3)
row.label (text="with:")
row.prop (self, "shift")
row.prop (self, "ctrl'")
row.prop (self, "alt")

addon_keymaps = []

def register_keymap () :
'"'Registers current hotkey'''

args = hotkey defaults
if Preferences.bl idname in bpy.context.preferences.addons:

prf = bpy.context.preferences.addons[Preferences.bl idname].preferences

args|["type"] = prf.key

args|["shift"], args['"ctrl"], args["alt"] = prf.shift, prf.ctrl, prf.alt
else:

prf = None

if args["type"]== 'NONE' : return

key config = bpy.context.window manager.keyconfigs.addon

if key config:
key map = key config.keymaps.new(name = "Object Mode")
hotkey = key map.keymap items.new(**args)
hotkey.properties.name = VIEW3D MT Boolean.bl idname
addon_keymaps.append ((key map,hotkey))

if DEBUG: print ("Keyboard shortcut set to: " + ("[Shift]-" if args["shift"] else "")
+ ("[Ctrl]-" 1if args["ctrl"] else "") + ("[AIt]-" if args["alt"] else "")
+ ("[%s]" % args["type"]l) + (" (from add-on preferences)" if prf else ""))

def unregister keymap () :
"' 'Removes current hotkey (if any)'''
key config = bpy.context.window manager.keyconfigs.addon
if key config:
for key map, hotkey in addon keymaps:
key map.keymap items.remove (hotkey)

addon_keymaps.clear ()

Continued on the next page...

Figure 6.6.4 The object_booleans.py script, part 4 (implementation of the add-on preferences)

Copyright Witold Jaworski, 2011-2019.

166 Appendices

The last part registers the API classes and adds the operator to the Object menu (Figure 6.6.5):

from bpy.utils import register class, unregister class
def menu_draw(self, context):

self.layout.operator_ context = 'INVOKE REGION WIN'
self.layout.operator menu enum(OBJECT OT Boolean.bl idname, property="op")

classes = [
OBJECT OT Boolean,
VIEW3D MT Boolean,
Preferences,

]

def register():
for cls in classes:
register class(cls)
bpy.types.VIEW3D MT object.prepend(menu draw)
register keymap ()
if DEBUG: print(_ name + ": registered")

def unregister () :
unregister keymap ()
bpy.types.VIEW3D MT object.remove (menu_ draw)
for cls in classes:
unregister class(cls)
if DEBUG: print(_ name + ": UNregistered")

if name == ' main ':
register ()

Figure 6.6.5 The object_booleans.py script, part 5 (add-on registration)

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6 Others 167

Bibliography
Books
[1] Thomas Larsson, Code snippets.Introduction to Python scripting for Blender 2.5x, free e-book,
2010.
[2] Guido van Rossum, Python Tutorial, (part of Python electronic documentation), 2011
Internet
[1] http://www.blender.org
[2] http://www.python.org
[3] http://www.eclipse.org
[4] http://www.pydev.org

[5] http://wiki.blender.org, in particular http://wiki.blender.org/index.php/Extensions:Py/Scripts

Copyright Witold Jaworski, 2011-2019.

http://www.blender.org/
http://www.python.org/
http://www.eclipse.org/
http://www.pydev.org/
http://wiki.blender.org/
http://wiki.blender.org/index.php/Extensions:Py/Scripts

File Edit Source Refactoring Mavigate Search Project Pydew Run Window Help
i (SR - B S R I | 45 Debug | €@ PyDev
#5 pebug 2 = O || 6= yariables 3 ®g Ereakpoints | &' Expressions : ¥ =0
g e i% T | Mame value
[=] F?" Diebug Server [Python Server] Globals Global variables
= unknawn context Context: <bpy_skruck, Context at 0x01FS5040>

last_width float: 0,10000000149011612
selected list: [bpy.data,meshes["Cube"].edges[4], bpyv.data.meshes["Cube"].edges[s], bp
self Bevel! <bpy_struct, MESH_OT_bevel("MESH_OT_bevel")=

= invoke [mesh_bevel.py:106]
b Dehug Server

@
=]
o MainThread - pid5936_seq1 @ event Event: <bpy_struct, Event at 0x021F5C95 >
-
@
=]

@ mesh_hevel 23 @ bp @ predew_debug

def invoke (self, context, event):

bpy.ops.object.editwode_toggle () D b
selected = listifilter (lambda =: e. e ugger

bpy.ops.object.editwode_toggle ()

if len(selected)] > 0O:
last_width = context.scene.get (self.LAST WIDTH NAME,None)
if last_width:
gelf.width = last_width

El consale 52 =] Tasks [3_ Problems @ Executables
Debug Server
Delbug Server at port: 5678

¥t Forcing tabs ‘Writable Insert

. . . . i PyDev Package Explorer -3
If you already have some programming experience in Python and want to write 2 & Bevel

an add-on for Blender 3D, then this book is for you! B src
@ mesh_bevel.py

; " == blender file
| am showing in this guide how to arrange a convenient development environ- &albeyel blend

ment for writing Python scripts for Blender. | use Eclipse IDE, enhanced with T & examples. _
i) mesh_interseckion. py

PyDev plugin. Both elements are the Open Source software. It is a good combi- 2 Pythan 3.2 (C:\Program Files|Python32|pythan exe)
nation that provides all the tools shown on the illustrations around this text.

The book contains a practical introduction to the Blender Python API. It de- Pro.IeCt
scribes the process of writing a new add-on. | discuss in detail every phase of Explorer
the implementation, showing not only the tools, but also explaining the methods

that | use. These pages will allow you to gain the skill needed to write your own
Blender tools.

ISBN: 978-83-941952-1-2 Free electronic publication

5% outline 52 =8 bevel. edge_;e ight method = "LARGEST'

Python API - Code Completion

@ context bpy.ops.object.modifier move up (modifier = hewvel.name)
< data
@ ops edge in obj.data.edges:
[types if edge.select:
@ bpy_struct edge.bevel weight = 1.0
@ Action
@ Actionactuator -
@ ActionConstraint -ops.ohject.mo
@ ActionFCurves 5 modifier_add dEEImodiFier_a_p_pIy(apply_as='DATA', modifier="":
@ ActionGroup edge in obi o modfier_move_up A-:\gﬂ:e:tosclhﬁer and remave From the stack
@ ActionGroups if edge.sel q_‘]l mode_set(mods, toggle) @apply_as (str): How to apply the modifier to the
[ActionPoseMarkers edge.be (I modifier_additype) geometry .)
= @ Actuator) ; in [DATA', 'SHAPE'], {optional)

- difi Er): f the madifier to edit
&F name cops.obdect. {Ghmodifier_convert{maodifier) g::i';néﬁer (e M e i e E e
& pin (0 modifier_copemadifier)
oF show_expanded {0 modifier_move_downimodifier)
oF type zlazs Bevel (bpy.t¥P (b modifier_move_up(modifier)

@ '*t Bevels sele ()
0 urlink bl idname = "me

@ ActuatorSensor

Press Ctl+Space for ternplates.

	Table of Contents
	Introduction
	Conventions
	Preparations
	Chapter 1. Software Installation
	1.1 Python (standalone interpreter)
	1.2 Eclipse
	1.3 PyDev

	Chapter 2. Introduction to Eclipse
	2.1 Creating a new project
	2.2 Writing the simplest script
	2.3 Debugging

	Creating the Blender Add-On
	Chapter 3. Basic Python Script
	3.1 Problem formulation
	3.2 Adapting Eclipse to Blender API
	3.3 Developing the core code
	3.4 Launching and debugging Blender scripts
	3.5 Improving our script
	3.6 Handling the runtime errors and user messages

	Chapter 4. Converting API Script into Blender Add-On
	4.1 Adaptation of the script structure
	4.2 Adding operator command to a Blender menu
	4.3 Dynamic interaction with the user
	4.4 Keyboard shortcut and a pie menu
	4.5 Implementation of the add-on preferences panel

	Appendices
	Chapter 5. Installation Details
	5.1 Details of Python installation
	5.2 Details of Java Runtime Environment (JRE) installation
	5.3 Details of Eclipse and PyDev installations
	5.4 Details of the PyDev configuration
	5.5 Managing Eclipse project perspectives
	5.6 Configuring the running and debugging commands for standalone Python scripts

	Chapter 6. Others
	6.1 Updating Blender API predefinition files
	6.2 Enabling Blender API code autocompletion in a PyDev project
	6.3 Importing/linking an existing file to a PyDev project
	6.4 Details of debugging Blender scripts
	6.5 What does contain the pydev_debug.py module?
	6.6 The full code of the object_booleans.py add-on

	Bibliography

