

Programming Add-Ons

for Blender 2.8

Writing Python Scripts

with Eclipse IDE

Witold Jaworski

version 2.0

Programming Add-Ons for Blender 2.8 - version 2.0

Copyright Witold Jaworski, 2011-2019.

wjaworski@airplanes3d.net

http://www.airplanes3d.net

This book is available under Creative Commons license Attribution-NonCommercial-NoDerivs 3.0 Unported.

ISBN: 978-83-941952-1-2

http://www.airplanes3d.net/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1 Software Installation 3

Copyright Witold Jaworski, 2011-2019.

Table of Contents

Table of Contents ... 3

Introduction ... 4

Conventions .. 5

Preparations .. 6

Chapter 1. Software Installation .. 7

1.1 Python (standalone interpreter) ... 8

1.2 Eclipse ... 11

1.3 PyDev .. 14

Chapter 2. Introduction to Eclipse ... 18

2.1 Creating a new project .. 19

2.2 Writing the simplest script ... 24

2.3 Debugging ... 29

Creating the Blender Add-On .. 33

Chapter 3. Basic Python Script ... 34

3.1 Problem formulation .. 35

3.2 Adapting Eclipse to Blender API ... 39

3.3 Developing the core code .. 47

3.4 Launching and debugging Blender scripts .. 53

3.5 Improving our script ... 61

3.6 Handling the runtime errors and user messages .. 71

Chapter 4. Converting API Script into Blender Add-On ... 77

4.1 Adaptation of the script structure .. 78

4.2 Adding operator command to a Blender menu ... 88

4.3 Dynamic interaction with the user ... 95

4.4 Keyboard shortcut and a pie menu ... 99

4.5 Implementation of the add-on preferences panel.. 106

Appendices .. 114

Chapter 5. Installation Details ... 115

5.1 Details of Python installation ... 116

5.2 Details of Java Runtime Environment (JRE) installation ... 120

5.3 Details of Eclipse and PyDev installations .. 122

5.4 Details of the PyDev configuration .. 129

5.5 Managing Eclipse project perspectives ... 133

5.6 Configuring the running and debugging commands for standalone Python scripts 134

Chapter 6. Others .. 138

6.1 Updating Blender API predefinition files .. 139

6.2 Enabling Blender API code autocompletion in a PyDev project.. 142

6.3 Importing/linking an existing file to a PyDev project .. 145

6.4 Details of debugging Blender scripts ... 149

6.5 What does contain the pydev_debug.py module? .. 160

6.6 The full code of the object_booleans.py add-on ... 162

Bibliography ... 167

4 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Introduction

You can use Python scripts for extending the standard Blender function set with new commands. Many useful

add-ons were created this way. Unfortunately, Blender lacks an integrated development environment ("IDE") for

the script programmers. In its Scripting workspace you will find only Text Editor, which highlights the Python

syntax, and Python Console. This basic set is enough for developing simple scripts but lacks many tools which

you need for a bigger project. I especially missed a decent debugger.

In 2007, I wrote an article that proposed for this purpose two Open Source programs: SPE (the editor) and

Winpdb (the debugger). However, this solution soon became obsolete. In 2009 it was decided that the new,

rewritten "from the scratch" Blender version (2.5) will have a completely new Python API. What's more, devel-

opers have embedded in this program the new Python release (3.x), while previous Blender version (2.4) used

the older Python 2.x. In the Python 3.0 the backward compatibility with the Python 2.x was broken. In the same

time the SPE editor was abandoned by its author. (It happens to smaller Open Source projects – they are often

hobbyist enterprises). Thus, in Blender 2.5 we were again restricted to the standard tools.

In 2011 I proposed a new developer environment, based on another Open Source software. This time my choice

fell on the Eclipse IDE, enriched with the PyDev plugin. In that time both products had been developed for 10

years. Unlike SPE and Winpdb, these new tools are written in Java, thus they do not depend on a specific Py-

thon version. This was a better choice: actually (in 2019) Eclipse and PyDev are still alive, and my guide (“Pro-

gramming Add-Ons for Blender 2.5”) was useful for 7 years. It was the “version 1.0” of this book. Adaptations for

Blender 2.6 and 2.7 involved so few minor changes, that instead of updating the original PDF publication (which

would require a new ISBN number) I just listed them in the errata on this project page.

In 2018 Blender Foundation published the “beta” release of a new Blender version: 2.8. If it was a commercial

product, I am sure that they would assign this version a more significant number, for example “3.0”. Comparing

to the previous releases, this new Blender contains many significant improvements and new features. Its devel-

opers also decided to discard many old functionalities, breaking the backward compatibility of the data (*.blend)

files. There are also some changes in the Python API, so the add-on compatibility was also broken. Thus, the

time has come to write a new edition of this guide (“Programming Add-Ons for Blender 2.8”). Consequently, this

is the “version 2.0”.

I think that the best way to present a tool is to show it at work. In this guide I am describing creation of a new

Blender command that performs the Boolean operations (union, difference, intersection) on solids. (They are

often used in creation of various machine parts). This book requires an average knowledge of Python and

Blender. (Yet, you may know nothing about Python in Blender). To understand the part about creating the final

add-on (Chapter 4) you should also be familiar with the basic concepts of object-oriented programming such as

"class", "object", "instance", "inheritance". When it is needed (as at the end of Chapter 4), I am also explaining

some more advanced concepts (like the "interface" or "abstract class"). This book introduces you to the practical

writing of Blender extensions. I am not describing here all the issues, just presenting the method that you can

use to learn them. Using it, you can independently master the rest of the Blender API (for example, creating

your own panels or sophisticated menus).

http://airplanes3d.net/pydev-000_e.xml

Chapter 1 Software Installation 5

Copyright Witold Jaworski, 2011-2019.

Conventions

In the tips about the keyboard and the mouse I have assumed, that you have a standard:

• US keyboard, with 102 keys;

• Three-button mouse (in fact: two buttons and the wheel in the middle. When you click the mouse

wheel, it acts like the third button).

Command invocation will be marked as follows:

Menu→Command means invoking a command named Command from a menu named Menu. More arrows

may appear, when the menus are nested!

Panel:Button means pressing a button named Button in a dialog window or a panel named Panel.

Pressing a key on the keyboard:

Alt - K the dash (“-“) between characters means that both keys should be simultaneously

pressed on the keyboard. In this example, holding down the Alt key, press the K key;

G , X the coma (“,”) between characters means, that keys are pressed (and released!) one

after another. In this example type G first, then X (as if you would like to write „gx”).

Pressing the mouse buttons:

 LMB left mouse button

 RMB right mouse button

 MMB middle mouse button (mouse wheel pressed)

Last, but not least — the formal question: how should I address you? Typically, the impersonal form ("something

is done") is used in most manuals. I think that it makes the text less comprehensible. To keep this book as read-

able as possible, I address the reader in the second person ("do it"). Sometimes I also use the first person ("I've

done it", "we do it"). It is easier for me to describe my methods of work this way1.

1 While coding and debugging I thought about us - you, dear Reader, and me, writing these words - as a single team. Maybe an imaginary

one, but somehow true. At least, writing this book I knew that I had to explain you all details of its topics!

6 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Preparations

In this section, I am describing how to build (install) the required software (Chapter 1). Then I am introducing the

basics of the Eclipse IDE and its PyDev plugin (Chapter 2).

Chapter 1 Software Installation 7

Copyright Witold Jaworski, 2011-2019.

Chapter 1. Software Installation

The integrated development environment, described in this book, requires three basic components:

- standalone (“classic”) Python interpreter (required for the PyDev);

- one of the Eclipse IDE “packages”;

- PyDev (an Eclipse plugin);

This chapter describes how to set them up.

I assume that you have already installed Blender. This book was written using Blender 2.80.

• Tools described in this guide require a 64-bit operating system. (For Windows 10 this is the default).

8 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

1.1 Python (standalone interpreter)

Blender comes with its own, embedded Python interpreter. Check its version first by switching to the Scripting

workspace and read the Python version number in the Python Console window. (It is written in the first line

(Figure 1.1.1):

Figure 1.1.1 Reading the version number of the embedded Python interpreter.

Blender in the figure above uses Python 3.7.0 (this is Blender 2.80). In principle, you should install the same

version of the standalone interpreter, but minor differences (especially in the third digit) are acceptable.

You can download the external Python interpreter from https://www.python.org/downloads/ (Figure 1.1.2):

Figure 1.1.2 Selection of the Python version (as seen in May 2019)

The third digit in the Python version number is the number of its “service edition”. This kind of updates is dedi-

cated for minor bug fixes. That’s why in Figure 1.1.2 I am choosing Python 3.7.3, because from programmer’s

point of view it is identical to Python 3.7.0, used in Blender 2.80.

Read the Python
version

You can find this window in the Scripting workspace

A link to the default
(32-bit) variant

Click here to go to the
details page of this
Python version

https://www.python.org/downloads/

Chapter 1 Software Installation 9

Copyright Witold Jaworski, 2011-2019.

Since 2019 Eclipse has been released in the single, 64-bit variant. Thus, just in case, I will also install the 64-bit

variant of standalone Python interpreter. That’s why I opened the web page that contains all the variants of the

selected Python version (Python 3.7.3 in Figure 1.1.2).

I scrolled down this web page, to find in its bottom lines the links to installation programs of all the Python “byte”

variants (Figure 1.1.3):

Figure 1.1.3 Downloading the 64-bit Python variant

For my computer, I downloaded the 64-bit variant for Windows.

Then I run the downloaded program (this is a standard Windows installer - Figure 1.1.4):

Figure 1.1.4 First screen of the Python installer

This setup program proposes creating a new folder for the Python binaries in the current user profile. You can

accept these settings. However, personally I do not like placing executable files in a subfolder of the

C:\Users\<user>\AppData\Local directory, because sometimes I need to search the application folders, and I

have difficulties to find them there. Fortunately, I have the Administrator rights to my PC, so I could to select in

the Customize Installation the “Install for all users” option. It creates Python folder in the C:\Program Files.

For details of this installation – see section 5.1 (page 116).

I am downloading the 64-bit variant for Windows

Default location of
the Python folder
is in the local user
profile

10 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

• Before downloading the external Python interpreter, you can also check if you already have it on your com-

puter. Try to invoke in the command line following program:

 python –-version

 If a Python interpreter is present on your computer, it will launch the console, as in Figure 1.1.1. You can

read its version number from there.

• It may happen that you will not find on www.python.org exactly the same Python version that is embedded

in your Bender (I mean the difference in the second digit of the Python version number). In such a case use

the newer version with the closest number. It will spoil nothing. Blender always uses its embedded inter-

preter, even when the standalone Python is available in your system. For example, if you use version 3.8 of

Python as the external interpreter, there should be no problem in writing scripts that are interpreted internal-

ly in Blender by its embedded Python in version 3.7. (In practice, differences between minor Python ver-

sions are not significant as long as you do not use the few new functions/extensions introduced in each

version).

http://www.python.org/

Chapter 1 Software Installation 11

Copyright Witold Jaworski, 2011-2019.

1.2 Eclipse

• Eclipse is a Java application, which uses the standard Java Runtime Environment (JRE). Since 2019 it

requires the 64-bit JRE variant. You can download it from www.java.com

(To learn more about the JRE installation details – see section 5.2, page 120).

Open www.eclipse.org/downloads and download the Eclipse installer (Figure 1.2.1):

Figure 1.2.1 Downloading an Eclipse package (as seen in May 2019)

When you run the downloaded program, it displays the Eclipse variants (packages) (Figure 1.2.2):

Figure 1.2.2 Selection of the Eclipse variant

Download the

setup program

I selected the JScript
IDE, but you can
choose another

http://www.java.com/
http://www.eclipse.org/downloads

12 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Eclipse is available in many different packages. Each of them is prepared for a specific programming language

(or languages). However, these packages are not fixed: you can still write a C ++ program in, let’s say, "Eclipse

for PHP Developers". Just add appropriate plugins for the C/C++ IDE! What you can see in Figure 1.2.2 are just

the most common packages (plugin sets). There is not any special “Eclipse for Python” package, so I suggest

choosing one of the packages with the least number of specific plugins: Eclipse for Testers or Eclipse IDE for

C/C++. (You can find detailed discussion of Eclipse installation on page 122).

When you click the selected item, it opens the new screen with installation options (Figure 1.2.3):

Figure 1.2.3 Eclipse setup options

By default, Eclipse folders are placed in the local user profile. (In the figure above this is C:\Users\me directory).

The installer will create there a subfolder named eclipse. This directory will contain subdirectories for subse-

quent Eclipse versions (in Figure 1.2.3 this is javascript-2019-03, where “javascript” is the name of the package,

and “2019-03” denotes the Eclipse version).

In one of the further chapters of this book we will search for a specific folder among the Eclipse files. (More pre-

cisely – among its plugins). That’s why I am installing Eclipse in this default location: I hope that it will match the

corresponding folder on your computer.

When the application is installed, check if everything works properly. On the beginning, Eclipse opens the work-

space selection dialog (Figure 1.2.4):

Figure 1.2.4 Selection of the projects folder

Workspace directory is the place for your projects. Each workspace contains its own set of the Eclipse prefer-

ences (including references to the standalone Python interpreter). By default, workspace folder is named

eclipse-workspace and located in the user home directory (as the folder with the Eclipse binaries). In Figure

By default, Eclipse installs
in the local user profile

Start the
installation

This is the local user home directory (Beware,
this is not the Documents subfolder!)

Chapter 1 Software Installation 13

Copyright Witold Jaworski, 2011-2019.

1.2.4 this home directory is C:\Users\me. Note, that this is not the standard Documents subfolder, but its parent

directory! If you are used to keeping all the user data in Documents - just change this path. Usually you will

need a single workspace folder for all your work. Eclipse will create in this directory subdirectories for your pro-

jects. A single project subdirectory will contain your Python scripts together with other auxiliary elements (for

example – a Blender test file). You can organize them into a subfolder structure.

When you start Eclipse for the first time, it displays the Welcome window (Figure 1.2.5):

Figure 1.2.5 The Welcome window

Now you have to add the PyDev plugin to Eclipse. It will adapt this environment for the Python scripts.

Here you can turn off this window

14 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

1.3 PyDev

For PyDev installation use the internal Eclipse mechanism, designed for the plugins.

• NOTE: To perform steps described in this section, you need an Internet connection

To add a plugin, go to Help→Eclipse Marketplace (Figure 1.3.1):

Figure 1.3.1 Opening the plugin list

In the Eclipse Marketplace window search for “PyDev” phrase (Figure 1.3.2):

Figure 1.3.2 Searching for the PyDev plugin in the Eclipse Marketplace window

When you find the plugin named PyDev – Python IDE for Eclipse, click its Install button. Then confirm the sub-

sequent screens: the default selection of the components, license terms.

Find and install
Eclipse plugins

1. Search here
for the „PyDev”
plugin

2. When you find it –
run its installation

Chapter 1 Software Installation 15

Copyright Witold Jaworski, 2011-2019.

Finally, you will see a message about restarting Eclipse (Figure 1.3.3):

Figure 1.3.3 Final window

Do it (just in case).

Eclipse saves all of its settings in the workspace folder (see Figure 1.2.5). The reference to the default Python

interpreter is also among these parameters. Let's define it now. Start by invoking the Window→Preferences

command (Figure 1.3.4):

Figure 1.3.4 Setting up Eclipse configuration for the current workspace

In the Preferences window expand the PyDev section, then in the Interpreters section highlight the item named

Python Interpreter (Figure 1.3.5):

Figure 1.3.5 Invoking the searching for installed Python interpreters

Then click the Choose from list button.

Highlight
this item….

… and click
this button

16 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

After a while PyDev will display the list of installed Python interpreters (Figure 1.3.6):

Figure 1.3.6 Python interpreter selection

Select from this list the 64-bit variant that you have installed in the previous step (see page 8). In response Py-

thon will explore its folders and suggest adding some of them to the system PYTHONPATH list (Figure 1.3.7):

Figure 1.3.7 Python interpreter folders to be added to the PYTHONPATH

You needn’t change anything here – just confirm this window clicking the OK button.

Select this Python
version

Just confirm the
proposed set

Chapter 1 Software Installation 17

Copyright Witold Jaworski, 2011-2019.

In the result you will see the configured Python interpreter in the Preferences window (Figure 1.3.8):

Figure 1.3.8 Configured Python interpreter

By default, PyDev names this new interpreter as “python”. It appears under this name in all PyDev windows. To

make it more informative, I renamed it to “Python 3.7 (64-bit)”.

Save these settings by clicking the Apply and Close button.

To use this interpreter for running or debugging your Python scripts from Eclipse, you need so-called Run

Configuration. However, this is a local project setting (unlike the Python interpreter, which is set per work-

space). To create a Run Configuration for your project, you will need the (main) script file. For details see sec-

tion 2.2, page 26, and section 5.6, page 134.

Configured Python
interpreter

Click here to confirm
this configuration

18 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 2. Introduction to Eclipse

Our project starts here. It will be an adaptation of the Boolean modifier. You will learn more about this in the next

chapter. In this chapter, except the names, our project has nothing in common with Blender, yet.

At the beginning, I want to show you the Eclipse basics. I will do it on the example of a simple Python script,

which writes "Hello" in the console window. I assume that the Reader has some experience in Python and has

already used other IDEs. This is not a book about any of these issues. My goal here is to show how to perform

in Eclipse some basic steps that are well known to every programmer.

Chapter 2 Introduction to Eclipse 19

Copyright Witold Jaworski, 2011-2019.

2.1 Creating a new project

Invoke the File→New→Project… command (Figure 2.1.1):

Figure 2.1.1 Opening a new project

In the New Project dialog open the PyDev folder and select there the PyDev Project wizard (Figure 2.1.2):

Figure 2.1.2 Selection of the appropriate project wizard

Then click the Next button.

Select this
creator

20 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In the PyDev Project window enter the Project name. I am naming it Boolean (Figure 2.1.3), because in the

next chapter it will become a Blender API project implementing the Boolean operations.

Figure 2.1.3 Filling the screen of PyDev Project pane

Select also the Don’t configure PYTHONPATH… option, leaving the remaining settings in their default state.

Click the Finish button, when done.

• PyDev grays out the Finish button when the Python interpreter is not yet configured (see page 15).

In response, the New Project creator displays a message (Figure 2.1.4):

Figure 2.1.4 A question from the wizard.

Confirm it, by clicking Open Perspective.

Enter the project name

Click this button, when done

Path to the project directory

Select this option
(Blender API scripts do
not need this)

Enable this option to switch off this message

Chapter 2 Introduction to Eclipse 21

Copyright Witold Jaworski, 2011-2019.

In response, PyDev creates an empty Python project (Figure 2.1.5):

Figure 2.1.5 PyDev perspective of a new project

What you see in the picture above is the default PyDev screen layout. In Eclipse you can have multiple screen

layouts, called project persepctives. The newly created project contains the default PyDev perspective. When

you try to debug your script for the first time, the IDE will ask you about adding another perspective: Debug.

Let’s start by creating in this project a folder for the source files. Highlight the project folder (Boolean), then se-

lect the New→Source Folder command from its context menu (Figure 2.1.6):

Figure 2.1.6 Adding a subfolder for the scripts

Place for the text editors

Alternative window layouts
(project perspectives): something
like Blender workspaces

Project Explorer

Place for the logical
structure of the
code from the active
text editor (classes,
methods, fields, …)

Project context menu

(click RMB)

22 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Type the subfolder Name in the wizard pane — let it be src (Figure 2.1.7):

Figure 2.1.7 Folder wizard pane

When you click the Finish button, PyDev will create this project subdirectory.

Let’s create now an empty script file. Expand the context menu of src folder and invoke the New→PyDev

Module command (Figure 2.1.8):

Figure 2.1.8 Invoking the new script (“module”) wizard

It will open another PyDev wizard window. Give this file a name that follows the rules for the Blender add-on

naming conventions: object_booleans (Figure 2.1.9):

Figure 2.1.9 PyDev module wizard window

(The first part of the name – “object” - is the target Blender mode). Click Finish, when done.

Name of the
scripts folder

Context menu of the

src folder (click RMB)

Enter the file name
(without .py extension)

Chapter 2 Introduction to Eclipse 23

Copyright Witold Jaworski, 2011-2019.

In the next dialog, PyDev asks about the eventual Python script template (Figure 2.1.10):

Figure 2.1.10 PyDev module wizard window (continued)

Select the <Empty> template and click OK.

In response PyDev adds an empty script file to your project. It contains just a header docstring comment, with

the creation date and the author name (Figure 2.1.11):

Figure 2.1.11 The new, empty script

Summary

• In this section, we have created a new Python project using the PyDev Project wizard (page 19);

• Eclipse requires a special source folder (page 21) for the Python scripts. (You cannot place them in the root

directory);

• You can use several predefined templates for Python scripts (page 22). However, for Blender API scripts I

use the <Empty> template;

• There are no special restrictions for the project names. In this example, I named this project “Boolean”

(page 20), because in the next chapters it will implement the Boolean command for Blender 2.8. For the

same reason I gave the newly created Python script file a name that follows the Blender convention for

add-ons: "object_boolean.py" (page 22).

Select an empty file

This asterisk indicates that the
file contains unsaved changes

Current user

24 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

2.2 Writing the simplest script

The script that I will write in this section will display the "Hello" text in the Python console. To see this result, we

need to add the panel with the Python console to our environment, because PyDev does not add it by default.

To do this, invoke the Window→Show View→Console command (Figure 2.2.1):

Figure 2.2.1 Adding the Console tab

This command adds an output console pane, which shows results of the script runs. Dynamic languages, like

Python, also offer something like "interactive console". It runs the Python interactive interpreter, allowing you to

check some expressions while writing the script. Let's add this gadget to the current perspective (Figure 2.2.2):

Figure 2.2.2 Switching to the interactive Python console

Invoke the PyDev Console command from the pane menu, then select the Python console option in its dialog.

2. Select PyDev Console

3. Choose
Python console

1. Click
this menu

Chapter 2 Introduction to Eclipse 25

Copyright Witold Jaworski, 2011-2019.

So now you have the panel with the Python interpreter, where you can check your code snippets (Figure 2.2.3):

Figure 2.2.3 Interactive Python console

One of the useful PyDev features is the code autocompletion. It works in the script editor window, and also in

the interactive console (Figure 2.2.4):

Figure 2.2.4 Example of the code autocompletion

Autocompletion usually takes effect when you type a dot after a name (for example, type "sys." in the console).

Such a behavior does not bother writing of the normal code.

Well, let's finish this talk. Eclipse is a very rich environment, so I cannot describe all its functions here. It’s time

to write our simplest script (Figure 2.2.5):

Figure 2.2.5 Our script — the first version, of course ☺

You can enter here any Python
expression, to check how it works.

This menu will allow you to switch
between the output console and
the interactive Python console

Start typing, then press Ctrl - Space

The list of the functions
which names match the
typed expression

Description (docstring)
of the selected function

Here you can see the first
element of the script logical
structure: main() function

26 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

To run this script for the first time, highlight its file in the PyDev Package Explorer, then select from the Run

dropdown the Run As→Python run command (Figure 2.2.6):

Figure 2.2.6 Running a script (for the first time)

PyDev will switch the console into the output mode, and you will see there the result of our script: the „Hello!”

text (Figure 2.2.7):

Figure 2.2.7 The results of this script: “Hello!” text.

When you run your script the first time, PyDev creates so-called Run Configuration in this project. You can find it

in the launch history of the Run and Debug dropdowns (Figure 2.2.8):

Figure 2.2.8 The default run configuration

Note that this configuration (Boolean object _booleans.py) is the only item (or the first item, if you wish) in the

Run favorites list. To repeat this last run, you can just click the Run button (Figure 2.2.9):

Figure 2.2.9 Launching the last run

In response, PyDev it will run your script again.

1. Highlight
the script

2. Click this command

Results of
this script Here you can switch back to

the interactive Python console

A Run Configuration,
created by the PyDev

Click Run
button

Chapter 2 Introduction to Eclipse 27

Copyright Witold Jaworski, 2011-2019.

To refine this initial run configuration for your project, from the Run dropdown invoke the Run Configurations…

command and find the definition of Boolean obect_booleans.py item (Figure 2.2.10):

Figure 2.2.10 Opening the Run Configuration definition for our script

I renamed this configuration as Run with external Python. Additionally, in the Common tab I enabled both of

the Display in the favorites menu options (Debug and Run: see Figure 2.2.11). (This setting “pins” this config-

uration into the favorites menu – just in case):

Figure 2.2.11 Altering the Run Configuration of our script

You can also define your own run configuration manually – see details on page 134.

• The run configurations names must be unique within the scope of the whole Eclipse workspace (in all its

projects). In this guide I changed the name of the Run Configuration for the clarity of the further text. For

the future projects you would better leave the run configurations their initial names.

In the Python run category
find this run configuration

From the Run menu invoke the
Run Configurations… command

Rename this
configuration

Mark this configuration
as the project default

Apply these changes

28 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Summary

• You can add to your PyDev projection a new pane with the Python console (page 24);

• The code autocompletion appears when you type a dot after an expression or press Ctrl - Space . It also

displays the docstring for the function selected in the tooltip pane (see page 25);

• We have launched the simplest script and checked its result in the console (page 26);

• When you run your script for the first time, PyDev creates for this file so-called Run Configuration. You can

manage them in the Run→Run Configurations dialog (page 27);

Chapter 2 Introduction to Eclipse 29

Copyright Witold Jaworski, 2011-2019.

2.3 Debugging

To insert a breakpoint at appropriate script line, double-click (LMB) the grey bar at the left edge of the text editor

window. Alternatively, you can also open the context menu at this point (Figure 2.3.1):

Figure 2.3.1 Adding a breakpoint

To open the context menu, click the RMB at the line where you want to insert new breakpoint. Then invoke the

Add Breakpoint command. Eclipse will mark this code line with a green dot (Figure 2.3.1). You can remove this

breakpoint in a similar way.

• You add or remove breakpoints by double clicking LMB the gray bar along the left text editor edge

To run the script in the debugger, click the bug icon (☺) on the toolbar (Figure 2.3.2):

Figure 2.3.2 Launching a debug session

When you launch the debugger for the first time, Eclipse will display information about switching to the Debug

perspective. (On the first run, it will add this perspective to your project). This additional perspective contains

additional panes that are useful for debugging.

Click RMB on this light gray bar

to open the context menu

New breakpoint

In this menu you can also
set other text editor options

Click here to start a debug session. At the
beginning, PyDev will ask you about
switching to the Debug perspective

Select this option to
not confirm this
switching in the future

30 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Figure 2.3.3 shows the screen layout of the Debug perspective, and the basic controls of the script execution

(and their hot keys). Note that the debugger has stopped at our breakpoint:

Figure 2.3.3 Screen layout of the Debug perspective

Green bar in the source code marks the line to be executed. When you press now the F6 key (Step over) —

debugger will set the c variable and move the execution “green bar” to the next line (Figure 2.2.4):

Figure 2.3.4 The state after pressing the F6 key (Step over)

Code execution
has stopped here.

The current line
(to be executed)

Watch window
(view/edit script
variables)

Current Python
call stack

Resume

F8

Step Into

F5

Step over

F6

Step Return

F7

Terminate

Ctrl - F2

Console: the standard output
of the running script

This variable has appeared (or its
value has been changed)

This line has been executed

Chapter 2 Introduction to Eclipse 31

Copyright Witold Jaworski, 2011-2019.

When you press the F6 button again, the c string is “printed”, and you leave the main() function (Figure 2.3.5):

Figure 2.3.5 The state just after leaving the function

Note that when the debug session is over, Eclipse has grayed out the execution controls visible on the toolbar

(Figure 2.3.6):

Figure 2.3.6 Debug perspective (no code is running)

You can make minor corrections of your script in this Debug perspective (the text editor windows are the same

as in the basic PyDev perspective).

This line was executed —
so it printed the “Hello!” text

in the console

The calling the main() function was the
last line of this script, so its execution
has been terminated

Script execution controls are inactive now

The result of
the last run

You can make minor corrections
to your code here, and then re-
launch the debug session

You can switch here
to the PyDev per-
spective

After termination of the
code execution, The
Python stack looks like
this

Here you can re-launch a new debug session

32 Preparations

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

However, if you are going to make extensive changes — switch to the PyDev perspective. You have more help-

er tools there (Figure 2.3.7):

Figure 2.3.7 Back to the PyDev perspective — for the further work on the code

While working on your script, you will be continuously switching between the Debug and PyDev perspectives.

That’s why it is worth to enlarge these toolbar buttons by displaying their labels (Figure 2.3.8):

Figure 2.3.8 Enlarged perspective switches

I did it by selecting in the context menus of these buttons (opened by RMB click) the Show Text option (see

page 133 for details).

Summary

• You have learned, how to set breakpoints in your code (page 29);

• We have launched our script in the debugger (page 29). On the first run, PyDev debugger creates a new

Debug project perspective;

• You have learned the basic debugger commands: Step Into (F5), Step Over (F6), Resume (F8) (page

30);

• We have looked at some helper debugger panes: Variables (page 30) and Stack (page 31);

• After termination of the script execution you can remain in the Debug perspective to make eventual correc-

tion to your code. Then you can just click the Debug button and debug it anew.

PyDev perspective

Default settings

Buttons with labels

Chapter 2 Introduction to Eclipse 33

Copyright Witold Jaworski, 2011-2019.

Creating the Blender Add-On

This is the main part of the book. I am describing here the creation of a Blender add-on. We will start with a

typical script - a plain sequence of Blender commands that runs "from the beginning to the end" (Chapter 3).

Then we will adapt it for the required plugin interface (Chapter 4). In the result, we will obtain a ready to use

add-on that implements a new Blender command.

34 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 3. Basic Python Script

In this chapter, we will prepare a script that performs a Boolean operation on selected objects. I used this exam-

ple to show in practice all the details of developing Blender scripts in the Eclipse environment. You will also find

here some tips about the typical issues that may appear during this process. One of them is finding in the

Blender API the right class and operator that support the functionality you need! (I think that still nobody, except

the few Blender API developers, is familiar with the whole thing…).

Chapter 3 Basic Python Script 35

Copyright Witold Jaworski, 2011-2019.

3.1 Problem formulation

There are three Boolean operations that you can apply to solids: difference, union and intersection. They are

often used in the mechanical or architectural modeling (Figure 3.1.1):

Figure 3.1.1 Boolean operations on solids

I regularly use the difference of two solids in forming various machine parts. For example, it allows me to quickly

“drill” a hole in the basic shape. However, this “quickly” is not especially quick in Blender, because it implements

these operations as the Boolean modifier. Let me to show it on an example: let’s say that I want to drill a hole in

plate A using auxiliary “tool” object B (Figure 3.1.2):

Figure 3.1.2 The initial state: the “raw material” (A) and the “tool” (B)

I start by selecting object A and adding to its modifier stack a Boolean modifier:

Figure 3.1.3 Adding a Boolean modifier to object A

Difference Union Intersection

I want to “drill” a
hole in object A

Object B: the “tool”

1. Select A object

2. Add a Boolean
modifier

36 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The modifier stack of a mechanical part in Blender usually contains various items. Each new one is appended at

the end of this list. In the next step I move the newly added Boolean modifier to the top position on the modifier

stack. (I am doing this, because I want to modify the original mesh of object A, instead of the more complex

shape with rounded edges, generated by the previously added Bevel modifier):

Figure 3.1.4 Moving the Boolean modifier to the topmost position on the object modifiers list

The Boolean modifier is set to the Difference operation by default, so I do not need to change this option. In the

next step I assign the “tool”: object B to this modifier (Figure 3.1.5):

Figure 3.1.5 Assigning the “tool” object (B) to the Boolean modifier

Finally, I Apply this modifier to the object mesh (Figure 3.1.6), because I do not want to keep object B:

Figure 3.1.6 Applying the modifier results to the object mesh

Move it to the
topmost position

1.

2.

1.

2.

Select
object B

Click Apply create this hole in the
basic mesh and remove this modifier

Chapter 3 Basic Python Script 37

Copyright Witold Jaworski, 2011-2019.

In the result, the Boolean modifier disappeared, and the new faces that form this hole are added to the “edita-

ble” mesh of object A (Figure 3.1.7). Now I can move object B to next location, to create another hole:

Figure 3.1.7 The final result of this Boolean operation

The Boolean modifier is a great tool when you need a “portable hole”: a feature which size, shape and location

you can alter many times during the project. It allows you to create complex shapes from basic elements of sim-

ple forms. (It is much easier to “unwrap” such simple meshes in the UV space for eventual texturing). However,

because of its “dynamic” nature, this modifier also has some drawbacks:

• You must keep the “tool” object in place (in a hidden collection?). While this is not a problem when you have

just a few of such items, it becomes an issue for the real Blender scenes with complex mechanical models. They

can contain several dozens of such auxiliary objects;

• You cannot edit properties of the edges or faces dynamically generated by a modifier. In particular, you

cannot assign these edges bevel weights, or flag as seams (which is useful for better unwrapping in the UV space);

That’s why I usually apply Boolean modifiers just after they are completed (by clicking their Apply buttons). For

this purpose, I need the simple, “destructive” Boolean operations, as shown in Figure 3.1.8:

Figure 3.1.8 The “destructive” Boolean operation that I need

It would begin in the typical way: by selecting the tool object (or objects) and the single target object (the active

object). Then I would invoke the command (for example – using a keyboard shortcut) and from its pie menu

select one of the Boolean operations. After this, it would automatically execute all the steps described above,

producing a hole in the mesh of the target object.

Now I can use object B
for “drilling” another hole

The Apply button removed the Boolean
modifier and made its result “editable”

Select the object
and the “tool”

Select the operation

Result

38 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In the options of this Boolean command (not shown in in Figure 3.1.8), I should also be able to mark a checkbox

that preserves operation results as a modifier. This command should propose the last used options as the de-

faults when I would invoke it for the next time.

In this chapter we will write a Blender script that will use the Boolean modifier for implementing such a "destruc-

tive" version of this operation. Basically, it will repeat the sequence of steps described in this section. In the next

chapter, we will convert this script into a professional Blender add-on, which works like the command shown in

Figure 3.1.8.

Summary

• Boolean operations on solids are often used in mechanical and architectural models;

• Blender 2.8 lacks the “destructive” Boolean command1. There is only the “dynamic” Boolean modifier

(page 35, 36);

• You must keep the auxiliary “tool” objects used by the “dynamic” Boolean modifier. For Blender models of a

real-life complex mechanism that consists hundreds various parts, it becomes a serious burden;

• You can obtain the effect of a “destructive” Boolean command by applying the Boolean modifier (page 36,

37). However, this operation requires several steps. In this chapter we will prepare a Blender API script that

automatizes this task;

1 Among the “community” add-ons installed with Blender you can find in the Object category a plugin named Bool Tools. This Python script

implements the Union, Difference, Intersection, and Slice commands. (Slice = Difference + Intersection). However, this command differs in

certain details from the command that I proposed in Figure 3.1.8. For example – it always deletes the “tool” object, and applies all the exist-

ing modifiers of the target object before applying the Boolean operation. (It leaves the Boolean modifier at the end of the modifiers list). In

principle the tool proposed in this chapter is so simple that I decided to write it from scratch, instead modifying the code of the Bool Tools

add-on. What’s more, I need such a new, real Blender plugin as the example for this guide.

Chapter 3 Basic Python Script 39

Copyright Witold Jaworski, 2011-2019.

3.2 Adapting Eclipse to Blender API

To write scripts for Blender in an easier way, we need to "teach" PyDev the Blender API. Its code autocomple-

tion should be able to suggest API objects, methods, and fields, just as it does for the standard Python modules.

Fortunately, PyDev has such a possibility. We just have to provide it a kind of simplified Python file that contains

only declarations of the API classes, their methods and properties. The very idea is similar to the header files

used in C/C++. To distinguish these "header files" from ordinary Python modules, we use the *.pypredef exten-

sions in their names (a derivate from “Python predefinition”).

I modified Campbell Barton's script, which generated the Python API documentation for Blender 2.5. Using it, I

was able to create the *.pypredef files for the entire Blender API. You can find them in the data that accompa-

nies this book. Just download the http://airplanes3d.net/downloads/pydev2/pydev-blender.zip file and unzip it –

for example into the folder that contains Blender binaries (Figure 3.2.1):

Figure 3.2.1 Unpacking additional files to the Blender folder

• In the folder that contains Blender executables (in Figure 3.2.2 this is Blender\ directory) place at least the

single file: pydev_debug.py. We will need it for debugging our scripts.

• You can place the Run.py file and doc\ folder in any directory you wish. However, in such a case in the

doc\refresh_python_api.bat batch file update the line that calls ..\blender (see page 141).

• If you follow the picture above and place the Run.py file and doc\ folder in the Blender directory, do not

forget to add the local Users group the create/write rights for Blender directory and its subdirectories.

Figure 3.2.2 The files required to follow this book

In doc you will find Blender API header files and the
script for their generation (see section 6.1, page 139).
The two additional files:

• pydev_debug.py is an utility for debugging
Blender scripts in Eclipse;

• Run.py is a template for invoking your Blender
API script. (I will use it in the further sections of
this chapter)

Copy these files and folders
to your Blender directory

Remember to add the Users group the “write” right for
this folder and its subdirectories (see page 140)

Unzipped: folder
and two files

In the main Blender directory place
at least pydev_debug.py file

http://airplanes3d.net/downloads/pydev2/pydev-blender.zip

40 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

To use the *.pypredef files in a PyDev project, invoke the Project→Properties command (Figure 3.2.3):

Figure 3.2.3 Opening the project configuration window

It opens the project Properties window. In its left pane select the PyDev – PYTHONPATH section. It displays

several tabs on the right side of this window. Select from them the External Libraries tab (Figure 3.2.4):

Figure 3.2.4 Navigating to the PyDev - PYTHONPATH:External Libraries pane

Add here (Add source folder) the full path to the doc\python_api\pypredef directory (Figure 3.2.5):

Figure 3.2.5 PyDev PYTHONPATH configuration

After every change made to PyDev PYTHONPATH make sure that you have clicked the Force restore internal

info button (Figure 3.2.5). In response, Eclipse will display information about the progress of this process in the

status bar (for a second or two).

1. Highlight the project

2. Open its properties

2. Click this tab 1. Select this item

2. Then click
this button

1. Use this button to add
to this list the path to
doc\python_api\pypredef

Chapter 3 Basic Python Script 41

Copyright Witold Jaworski, 2011-2019.

From this moment, when you add to your script appropriate import statement, PyDev will use the whole hierar-

chy of the Blender API in its autocompletion (Figure 3.2.6):

Figure 3.2.6 Code autocompletion in a Blender API statement

The list of the class members appears when you type a dot. What's more, when you hold the mouse cursor for a

while over a method or an object name — PyDev will display its description in a tooltip (Figure 3.2.7):

Figure 3.2.7 Displaying descriptions of Blender API objects

When you move the mouse outside, the tooltip with the method description disappears. You can also click the

reference link, placed in the first line of the tooltip text (see Figure 3.2.7). This link opens the source file in the

line that contains declaration of this item (Figure 3.2.8):

Add this import statement to
your code, first!

Then – as usual: when you type a dot,
PyDev opens autocompletion pane

When you hover mouse cursor
over a method or a field – PyDev
displays its description

In these tooltips you can also find a link to the source of dis-
played declaration. Click it to open this source file in a new edi-
tor window. In this way you can read docstrings of the API fields

42 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Figure 3.2.8 Property declaration in the predefinition file (bpy.pypredef), opened using the tooltip reference link

From the PyDev point of view, such a declaration is in the predefinition file (bpy.pypredef). That’s why it is

opened as the source code.

You can also locate the selected field or function in the Outline pane (Figure 3.2.9):

Figure 3.2.9 Finding the selected class member in the Outline panel

In the source file, you can find additional de-
scriptions for the API variables and class fields.
(PyDev does not display them in the tooltip)

1. Place the caret at objects, and when PyDev

highlights it – open the context menu (RMB)

2. Invoke Show In→Outline

In the Outline window
PyDev finds highlighted
element (here: objects)

In the Outline window you can quickly
find the class of the selected element
(in this case: BlendData)

Chapter 3 Basic Python Script 43

Copyright Witold Jaworski, 2011-2019.

Note that the Outline pane is a useful “training aid”. You can use it for an interactive “walk around” the whole

Blender Python API. Let’s collapse the tree of the basic bpy module to its root nodes (Figure 3.2.10):

Figure 3.2.10 The root structure of the Blender API

Here you can see the basic API elements:

bpy.data provides access to the data of the current Blender file. Each of its fields is a collection of

objects of the same type (scenes, objects, meshes, etc. — see Figure 3.2.9);

bpy.context provides access to the current Blender state: the active object, scene, current selection;

bpy.ops contains all Blender commands (operators). (In the Python API, each Blender command

is implemented as a single method of this class);

bpy.types contains definitions of all classes that are used in the bpy.data, bpy.context and

bpy.ops structures;

When you look inside bpy.types, you will see an alphabetical list of all classes used in the API. An exception

from this rule is the bpy_struct structure, located on the first place. This is the base class of all other API clas-

ses. Its methods and properties are always available in each Blender object (Figure 3.2.11):

Figure 3.2.11 bpy_struct: the base class of all Blender API classes

Click here, to collapse
the bpy structure

bpy.data is a field of the bpy
module, providing an instance
of the BlendData class

All Blender classes inherit
methods and fields from
the bpy_struct class

44 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Note that bpy_struct methods may be not fully implemented in the derived classes. For example — bpy_struct

has the items() method. It is implemented only by the API collections (for example — MeshEdges, the collec-

tion of MeshEdge objects) together with additional methods, like add() (Figure 3.2.12):

Figure 3.2.12 Derived Blender API classes — declarations of their methods and properties

Of course, all the classes that represent single API elements (like MeshEdge) have their items() methods emp-

ty (as well as many other bpy_struct methods and properties).

The inheritance of the items() method in every Blender API collection class obscures the results of automatic

code completion. PyDev reads from the base class definitions that each of them contains just bpy_structs.

Fortunately, it is possible to “suggest” PyDev the appropriate type of a variable. Just put earlier in the code a line

that assigns to this variable the appropriate type (Figure 3.2.13):

Figure 3.2.13 “Variable declaration” — a workaround of the Blender API collection type problem

In practice, you should add such "declaration line" only for a moment, when you need to use the automatic code

completion. Always place it above the line where this variable receives its first "real" value. In this way, your

script will work correctly even if you forget to comment out this "declaration".

Thanks to this declaration, you can see the
Object members in the autocompletion list

All the standard collection methods of
this class are derived from bpy_struct.
This definition contains only the class-
specific methods, like add().

An example of a field declared in the
predefinition file.
Its type is assigned as its value (this is
the autocompletion requirement)

This auxiliary line forces PyDev to
assume that cube is an instance of
bpy.types.Object class.

Chapter 3 Basic Python Script 45

Copyright Witold Jaworski, 2011-2019.

Anyway - PyDev detects such lines, identifying them as "unused variables". It marks them with appropriate

warning (Figure 3.2.14):

Figure 3.2.14 PyDev warnings for each “type declaration” line

It is a good practice to look into the Problems tab from time to time. You will see there all the lines you have

forgotten to comment out. Using this list, you can quickly fix these issues.

So far, we have discussed only the bpy.types branch. What about Blender operators (bpy.ops)? There are

plenty of them! They are grouped into modules (classes): action, anim, armature, … and so on. Let’s expand

the bpy.ops.brush module (Figure 3.2.15):

Figure 3.2.15 Operator declaration example

Each operator module (bpy.ops.brush, for example) is declared as a separate class that contains many meth-

ods. Each of these methods is a Blender operator. Note that every operator can be invoked without any parame-

ters — because each of its arguments is named and optional (i.e. has a default value).

Before running your script,
clear its Problems list!

Groups of Blender operators (they
are defined as Python classes)

Each operator is
a class method

46 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Because of the PyDev utilities like code autocompletion or the Outliner pane, this section has become an intro-

duction to the Blender API architecture. Continuing the topic started on page 43, I have enumerated below the

remaining API modules. They are much smaller than the main modules (bpy.data, bpy.context, bpy.types,

bpy.ops):

bpy.app various information about current Blender instance: version number, the path to the ex-

ecutable file, compiler flags, etc.;

bpy.path helper methods for working with paths and files (this functionality is similar to the

os.path standard module);

bpy.props functions for creating new class properties, which Blender can display as the controls in

the panels (when they are needed). To distinguish them from the ordinary class proper-

ties (fields), they are called "Blender custom properties" or just "custom properties". We

will use them in the next chapter, in the operator class;

bpy.utils registration of Blender add-ons, importing Python modules, invoking other programs.

Provides utilities for handling the path strings. Contains two additional submodules:

units and previews;

bpy_extras further auxiliary functions and classes. They are grouped into eight submodules:

anim_utils, object_utils, io_utils, image_utils, keyconfig_utils, mesh_utils,

node_utils, view3d_utils.

Apart the basic bpy section, Blender API offers additional modules:

mathutils classes representing some geometric and algebraic objects: Matrix (4x4), Euler,

Quaternion (rotation), Vector, Color. Contains also the geometry submodule with a

few helper functions (line intersection, ray and surface intersection, etc.);

freestyle six submodules (types, predicates, functions, chainingiterators, shaders, utils) for

handling the auxiliary “sketching” (NPR) Freestyle renderer;

bgl functions that allow scripts to draw directly in the Blender windows. (In fact, it contains

most of the OpenGL 1.0 methods. Preserved for the backward compatibility);

gpu another, more modern (and preferred) API for drawing directly in the Blender windows.

Contains four submodules: types, shader, matrix, and select;

bmesh another API for mesh handling (precisely: boundary meshes). Contains four submod-

ules: ops, types, geometry and select;

I know little about the three remaining modules: aud (Audio), blf (Font Drawing), and idprop.types (ID Property

Access), so they are not described in the list above.

Summary

• The Python predefinition files (*.pypredef) allow PyDev to display Blender API code autocompletion. The

predefinition files for all Blender API modules are included in the data accompanying this book (page 39);

• After unzipping the folder that contains the *.pypredef files (doc\), add its path to the PyDev project

PYTHONPATH (page 40);

• To enable the Blender API autocompletion in your script, add the “import bpy” statement in the first lines of

its code (page 41);

• You can use PyDev tooltips that display function descriptions and the Outliner pane for further exploration

of the Blender API structure (page 41,42);

• The reference link in the tooltip window allows you to open the source *.pypredef file in the text editor. It

can be useful for examining the descriptions of a Blender API class fields, which PyDev does not show in

the tooltip pane (page 44).

• In case of the elements from a Blender API collection, use "variable declarations" (page 44) to obtain the

correct code autocompletion;

Chapter 3 Basic Python Script 47

Copyright Witold Jaworski, 2011-2019.

3.3 Developing the core code

In most of the programming guides, you would immediately see the script code in the section like this one. Their

authors often present the ready solutions as if they were “pulling a rabbit from the hat", adding just some com-

ments. This guide takes a different approach. I would like to show you here what happens before you write the

first script line: the searching for the solution. This stage is even more important than the “pure” coding.

First prepare the test environment. For this purpose, in the initial Blender scene I transformed the default Cube

object into a thick plate. To give it a more “mechanical” look, I rounded its edges using the Bevel modifier. Then

I added to this scene a Cylinder object. I am going to use it as the “tool” in the Boolean operation, thus I

switched its representation to Wireframe mode. I will conduct these tests in the standard Scripting workspace

(Figure 3.3.1):

Figure 3.3.1 Screen layout for the “test environment”

Save this Blender file to the disk, and then import it to the PyDev project (using the Import.. command — see

details on page 145), so it will be “available on a single click” (Figure 3.3.2):

Figure 3.3.2 The test Blender file, added to the Eclipse project

Python Console

3D View
Outliner (2)

Properties

Outliner (1)

Text Editor

Operations Log

Cylinder

Cube

This Blender file contains
the “test environment”

48 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The goal of this section is to prepare a code that automatically executes the steps described in section 3.1

(Figure 3.1.3 - Figure 3.1.6). When you invoke a Blender command, its equivalent Python API expression ap-

pears in the Operations Log window (see Figure 3.3.1, page 47). This is the best place to learn what you should

put into your code. Let’s begin by adding a Boolean modifier to the active object (Figure 3.3.3):

Figure 3.3.3 Adding a Boolean modifier (to the active object)

Similarly, after the next step – moving the Boolean modifier to the top of the modifiers list – a new line appears

in the Operations Log window (Figure 3.3.4):

Figure 3.3.4 Moving the Boolean modifier upward on the modifier list

In the third step I assigned object Cylinder to the Boolean modifier, pointing it directly on the screen (using the

“pipette” tool – (Figure 3.3.5):

Figure 3.3.5 Assigning Cylinder as the Boolean modifier “tool” object (using the mouse)

When you add a Boolean modifier to
object Cube, Blender displays such a
line in the Operations Log window:

Operations Log

Properties

Operations Log

When you move up the Boolean modifier
on the modifier list, you will see this new
line in the log window:

I clicked object
Cylinder using
the “pipette” tool

Chapter 3 Basic Python Script 49

Copyright Witold Jaworski, 2011-2019.

This did not cause Blender to add any new log line. However, when I manually typed the object name in the

Object field, Operations Log displayed corresponding expression (Figure 3.3.6):

Figure 3.3.6 Assigning Cylinder as the modifier “tool” object (by typing the object name)

While the API code in the previous lines contains procedure calls, this one is an assignment. Let’s look at it to

learn what is happening here. The bpy.context object provides information about the “execution context” of

your code: which objects are selected, the window where the user invoked your script, etc. The

bpy.context.object property returns the active object (the last scene object that you have clicked). In this line

Blender uses the modifier named Boolean (modifiers["Boolean"]). It assigns to the object field of this modifier

(this is the “tool”) a reference to another scene object named Cylinder (bpy.data.objects["Cylinder"]).

Note how Blender refers to (scene) object Cylinder. In the log line it is represented by an element of the list

named bpy.data.objects. The scene object name (you can type/edit it in Blender Properties panel) is the index

(or “key”) of this list. In fact, in Blender API this is the preferred method of referencing all types of the scene dat-

ablocks. Module bpy.data provides your scripts contents of the current Blender file as lists (precisely: iterators).

Its objects list contains objects from all scenes defined in this file. The names of these objects are unique, so

they are used as the convenient keys. (When you try to type in the Name field of a scene object an identifier that

is already used by another object, Blender automatically corrects it. It adds a numerical suffix to this name).

• All Blender data (datablock) types have their lists in module bpy.data: meshes[], materials[], textures[],

scene object collections (collections[]), etc. You can “pick” (i.e. refer) to any element from these lists using

the datablock name as the list key.

The last step in the executing sequence is clicking the Apply button of the Boolean modifier (Figure 3.3.7)

Figure 3.3.7 “Applying” the Boolean modifier to the object mesh

When I type the object name (or pick it
from the list) – Operations Log displays
corresponding assignment:

Properties

Operations Log

Properties

Operations Log

When you click the Apply button,
in the log you will see this line:

50 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

As you can see, Blender wrote the basic code of the script in the Operations Log window. Now you can copy

this text to the clipboard: just select it with the mouse and press Ctrl - C (Figure 3.3.8):

Figure 3.3.8 Copying Blender log lines to the clipboard

Then you can paste this code to Eclipse text editor (Figure 3.3.9):

Figure 3.3.9 The simplest API script: lines copied from Blender Operations Log

This is the first approximation of the code we need. Do not forget to add above the “import bpy” statement. Oth-

erwise Eclipse will mark errors in all these lines (Figure 3.3.10):

Figure 3.3.10 Effects of the missing bpy module import statement

They would also occur in Blender. Always keep your script in Eclipse free of any error.

1. Use mouse to
select the code

2. Press Ctrl - C

Selected lines are
highlighted in blue

Do not forget to place this import
statement at the beginning

The code, copied from the
Blender operations log

If you forget to add this line
– Eclipse will display errors

Chapter 3 Basic Python Script 51

Copyright Witold Jaworski, 2011-2019.

The script from Figure 3.3.9 works only for the specific data which I prepared in the test *.blend file. Before we

run it for the first time, let’s change the structure of this code. In this way I am preparing this script for further

modifications (Figure 3.3.11):

Figure 3.3.11 The same code, organized into more “professional” structure

I placed the original code into a procedure named boolean_operation(). In this way the main script will be

shorter and more readable. In the future, this plugin will use user-selected objects as the “tools” for a Boolean

operation. That’s why this procedure has a single argument: the tool object. Inside boolean_operation() I as-

sign it to the modifier. For the first test, in the second-last line of this script I simply call this procedure, passing

object Cylinder as the tool parameter.

In the last line I placed the print() command. It displays the text in the console. Sometimes such a statement

can be useful: it allows you to quickly determine if the script execution has been successfully completed. In the

next section the presence of this line will allow me to show how the debugger leaves the procedure call (unlike

as in the case on page 31)

By the way: as you can see at the beginning of the procedure, I already added there a few comment lines that describe

shortly: what it does and what arguments it expects. This is my “good practice”. Despite appearances I do it for myself. Writ-

ing such a comment forces me to re-think if this procedure is necessary, and if its arguments match its task. Because Python

is a language with “flexible types”, I always specify in such a description what argument type/types it expects and other as-

sumptions. These comments allow me to write a cleaner code. (From my experience, 50% of runtime errors in the scripts is

caused by passing a wrong parameter to a function or method. You can avoid most of them if you read the func-

tion/procedure descriptions that PyDev displays in the tooltip window). I also have no illusions about my memory: I will re-

member nothing when I return to this script after a year or two. It is always frustrating to learn the same things anew. In this

case my comments help me in quick recalling the nuances of such a “forgotten” code. I started commenting my programs

during my student years, and since that time this habit saved me many troubles.

I write comments for
each field, method,

and function

I put the original log lines
into a procedure

I pass the “tool”
object as the
parameter

Temporary diagnostic line

In this call, I am passing
the Cylinder object as
the tool parameter

Calling the procedure

52 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Summary

• I prepared in Blender a test environment for the script: the file named booleans.blend. It contains two ob-

jects – Cube and Cylinder. For the script development in Blender we will use the standard Scripting work-

space (page 47);

• It is convenient to place the test Blender file in a folder of your Eclipse project (page 47);

• In the Operations Log window, you can see the Python API code for the Blender commands that you are

invoking (page 48);

• Operations Log does not display the API code when you pick an object using mouse. However, it displays a

Python statement when you do the same by typing the object name in the corresponding field (pages 48,

49);

• The code from Operations Log can be an excellent information source. In the simple cases, like this one,

the key lines of the script are “written by Blender” itself. All what you have to do is to copy them to clipboard

and paste into Eclipse (page 50);

• The Blender API predefinition files (the bpy module and the others) allow PyDev IDE to highlight various

errors and warnings in your code (page 50). Fix all these issues before running your script in Blender;

• The basic information sources for your script are two objects:

 - bpy.data, which provides all the data from the current Blender file;

 - bpy.context, which provides information about script “environment”, for example - selected objects;

• The preferred way to access the Blender file data are the bpy.data lists. They use datablock names as

their keys (indices) (page 49);

Chapter 3 Basic Python Script 53

Copyright Witold Jaworski, 2011-2019.

3.4 Launching and debugging Blender scripts

In the previous section we have written the first piece of the script that should work in Blender. You could launch

it by loading this file into the Blender Text Editor and invoking the Run Script command. However, it would be

difficult to debug your script this way. What's more, it brings some confusion about the source files. (If you

changed something in the Blender Text Editor, you would have to remember to save it back to the disk).

I suggest another, more convenient solution. Open in the Blender Text Editor the Run.py file that accompanies

this book (see page 39) (Figure 3.4.1):

Figure 3.4.1 Adding the Run.py script to our Blender test file

Run.py is a “stub” script, containing just a few code lines. To adapt it for your project, update values of its

SCRIPT and PYDEV_PATH constants (Figure 3.4.2):

Figure 3.4.2 Adaptation of the Run.py code to this project

The SCRIPT constant should contain the full path to your script file (for details how to find it – see page 151).

The PYDEV_PATH is the full path to a certain PyDev subdirectory, named pysrc. In this folder you can find the

pydevd.py module, which contains so-called remote debugger client (see pages 149 and 160 for more infor-

mation). Actually (in 2019) you can find the main PyDev directory in the current user profile (C:/Users/me/ in

Figure 3.4.2), in the .p2/pool/plugins subdirectory. However, in the future PyDev versions this location can

change, so in case of troubles see page 152, where I suggest how you can find it.

When you switch trace to False
— the script will not be debugged

As PYDEV_PATH enter the full path to
*/pysrc folder (see page 152)

Full path to your
script (see page 151)

54 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Make sure that the test scene is also ready for the run. At this moment the first version of our code assumes that

the active object is Cube. That’s why it is selected (Figure 3.4.3):

Figure 3.4.3 Preparation of the test environment – I selected object Cube (now this is the active object in this scene)

Insert a breakpoint in your script where you want to start debugging. In this case, I set it at the first statement

(Figure 3.4.4):

Figure 3.4.4 Setting the breakpoint

Launch from Eclipse (Debug perspective) the remote debugger server (details — see page 149) (Figure 3.4.5):

Figure 3.4.5 Launching the debug server process

For further details about this step — see page 153. If you cannot find this button on your toolbar — see pages

149, 150.

Selected
object

Cylinder

Cube

If you set no breakpoints, the debugger will run this
script from the beginning to the end, without any stop

The server starts listening on TCP
port 5678

(It may happen that your firewall will
ask you for the permission to open the
TCP/IP communication via this port)

Run the remote
debug server

Chapter 3 Basic Python Script 55

Copyright Witold Jaworski, 2011-2019.

When the debug server displays its “listening” message in the console, you can run the Blender script. Click the

Run Script button, located in the Run.py window header (Figure 3.4.6):

Figure 3.4.6 Launching the Blender script for the PyDev debugger

This code loads the current version of your file (from the path specified in the SCRIPT constant) into the debug-

ger. From this moment Blender window “freezes” until you finish this debug session. It is not being updated and

does not react to the mouse clicks. The mouse cursor in Blender window shows the “wait” icon.

Now click the Eclipse window. After a few seconds the debugger pane "comes to life", and the debugger stops

at the first breakpoint (see page 54) (Figure 3.4.7):

Figure 3.4.7 The first breakpoint

Step Over (F6) the lines of the script main code until you reach the boolean_operation() procedure call

(Figure 3.4.8). Then Step Into (F5) this procedure:

Figure 3.4.8 Stepping into the boolean_operation() procedure

Run this script

We are in our script
(object_booleans.py),
at the first breakpoint

Click Step Into (F5),

to enter this procedure

56 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In response, PyDev enters the boolean_operation() procedure and stops on its first line (Figure 3.4.9):

Figure 3.4.9 Executing the code inside the boolean_operation() procedure

To keep track of the Boolean modifier fields, use the Expressions panel (Figure 3.4.10 — see also page 155):

Figure 3.4.10 Tracking the selected fields in the Expressions tab

When the procedure is completed, click the Resume button (F8) to finish this debug session1 (Figure 3.4.11):

Figure 3.4.11 Resuming script execution (at the last line of the script)

1 If you Step Over the last line of your script (in this example the object_booleans.py file), Python will drop it from the call stack. The debug-

ger will stop on the next line of the auxiliary module used by Run.py for loading your code (see page 138). We have nothing to do there,

thus I suggest to Resume this execution. It will end this debug session in a controlled way.

OK, we are going to execute the first
line of boolean_operation() procedure

In the Variables pan-
el you can see the

tool argument

The boolean_operation() procedure
is on the top of the Python stack

In the Expressions pane you can
track the state of a modifier field

Click Resume (F8), to complete

execution of this script

Chapter 3 Basic Python Script 57

Copyright Witold Jaworski, 2011-2019.

In the console you will see the text printed by the last (diagnostic) line in our script (Figure 3.4.12):

Figure 3.4.12 The state of the PyDev environment after the last Resume command

There were no runtime errors (so far). Let’s look at its results in the 3D View window (Figure 3.4.13):

Figure 3.4.13 The results of our script

As we have intended, the object Cube mesh contains a hole, “drilled” by Cylinder. So, this script works proper-

ly. To re-use this test data in the next run, undo the result of this last operation. (Just invoke the Edit→Undo

command or press Ctrl - Z).

For this project, I will not do any further modifications in the Run.py code, loaded into Blender Text Editor. I will

just click its Run Script button to start a new debug session for the updated version of object_booleans.py

script, modified in Eclipse. That’s why I minimized this Text Editor pane just to the height of its header, so that

the Run Script button is still available (as in Figure 3.4.13). Then I saved the test *.blend file, preserving this

modified layout of the Scripting workspace.

The debug server is still
listening (it is ready for a
new debug session)

Of course, you can also modify
your script in this text editor

Execution control buttons
became gray

In the console you can see the “diagnostic”
text that I placed in the last line of our code

The Run.py code in this Text Editor window does not require any further modifica-
tions (for this project). You can leave it in this test *.blend file “as it is”, minimizing
this pane to its header (so that you still will be able to click the Run Script button)

58 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Our first run was successful, but how the debugger terminates the script execution in the case of a runtime er-

ror? To check this, just select Cylinder, making this object active (Figure 3.4.14):

Figure 3.4.14 Preparing of a different input for our test

To debug again the script, just click the Run Script button in the Blender TextEditor header1. As long as the

PyDev debugger server process is "listening" the TCP port, it automatically breaks the script execution at the

first breakpoint.

Initially you will stop in the same place as in Figure 3.4.7 (page 55). Execute the subsequent script lines and

step into the boolean_operation() procedure. Stop on the line that assigns the tool object to modifier Boolean

(Figure 3.4.15):

Figure 3.4.15 The “tool” assignment line

The highlighted line in Figure 3.4.15 will cause a runtime error.

1 The Run.py code that you run clicking Run Script button takes care of reloading the current version of your script before it starts its execu-

tion. If you have just modified it in Eclipse, simply save it before clicking the run button in Blender.

Select Cylinder, making
it the active object

This line will cause
a runtime error

These two additional modules (compare this stack to Figure 3.4.9,
page 56) were invoked by pydev_debug.py module for reloading
the object_booleans.py script before its execution

Chapter 3 Basic Python Script 59

Copyright Witold Jaworski, 2011-2019.

Just Step Over (F6) it and see what happens (Figure 3.4.16):

Figure 3.4.16 The state of the PyDev debugger just after a runtime error

When the runtime error (exception) occurs, Python removes the source object_booleans.py module from the

call stack. (Compare the stacks shown in Figure 3.4.16 and in Figure 3.4.15). Thus, we lost the chance for in-

specting the local variables for their values in that very moment. All what we can do now is to Resume (F8) the

execution of this script. It will allow Blender to handle this exception and show the standard traceback infor-

mation as well as the error message in the console (Figure 3.4.17):

Figure 3.4.17 The call stack traceback and the error message, displayed in the console

The most important information you will find in the last lines of this output. There is a direct link to the line that

caused this error, and the Blender API message about the cause of this exception. In this particular case – the

script tried to assign itself (object Cylinder) as the tool object in the Boolean modifier.

Our script (object_booleans.py)
disappeared from the stack!

PyDev opened in the text editor the default file
(__init__.py) of the standard importlib package. The
Run.py code uses this package for reloading script
code, thus the next executed line is in this module.

In this situation you can only Resume (F8) script

execution, letting Blender to signalize this error

Click this link to go directly to
this place in the source code

The error occurred in this line

The Blender API message about the reason of this exception

60 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

• The runtime exception (error) suddenly occurs in an unexpected place of our script. To check the state of

the local variables of a procedure/function where it happens, place its code into try: … finally: statement

If you wish to turn off the remote debug server in Eclipse, close first the connected process (i.e. Blender).

• Once you have run the debug server, just keep it running for the whole time. It will close automatically when

you exit Eclipse IDE.

The auxiliary module pydev_debug.py (see its code on page 160), used by Run.py to load the script file,

searches the PYTHONPATH for its base name. It works this way, because in this code I used the __import__()

and imp.reload() methods for script execution. In the first lines of pydev_debug.py the path to your project is

added at the very end of the PYTHONPATH list1. This means that if another copy of your script exists in any of

the Blender PYTHONPATH directories, it will be loaded and executed instead of your file, and your breakpoints

will be ignored. This can be really confusing!

• Never use for your script file the name of any standard module or a registered Blender add-on, because

their directories occur earlier in the PYTHONPATH than your project directory. (You can examine the

sys.path list in Blender Python Console to learn about these directories and their order).

For example: one of the standard Python modules is named test. If you name your script test.py, then the

Run.py code will properly load (import) this standard module, instead of your script! From your point of view –

nothing will happen when you click the Run Script button, and you will not know what is going on, because there

will be no error message. (I lost three hours before I discovered that the problem is in the script name).

The bet practice is to follow the Blender convention for the add-on names, and name them using the

mode/window prefix: object_*, mesh_*, uv_*, etc.

Summary

• To run a script in the PyDev debugger, use the Run.py stub code. Place it in the Blender Text Editor. Save

this Blender file as the test environment for your PyDev project (page 53);

• Before the first run, modify the string constants in the Run.py code. Place there the path to your script (in

SCRIPT) and the path to the PyDev remote debugger client module (in PYDEV_PATH) (page 53);

• To start the first debug session, activate in Eclipse the PyDev Debug Server (page 54), then click the Run

Script button in Blender (page 55);

• To start every subsequent debug session just click again the Run Script button in Blender (page 57, 58);

• To track changes of selected object properties, use the Expressions window (page 56);

• When you reach the last line of your script – click Resume (F8) to complete its execution (as in page 56). If

you Step Over (F6) this line, Eclipse will open the window with an auxiliary code, which is used by Run.py

for running your script. (There is nothing important to debug there);

• When an error (runtime exception) occurs in your script, Python closes your module and removes it from

the call stack. It also opens a new window with one of the standard Python or Blender modules. In such a

case Resume (F8) this execution, then check the console for the error message (page 59);

1 You can enhance the pydev_debug.py code in two ways: 1. Prepend (instead of appending) the script directory to sys.path; 2. Use the

new exec_module() method from the importlib package, available since Python 3.4;

Chapter 3 Basic Python Script 61

Copyright Witold Jaworski, 2011-2019.

3.5 Improving our script

Our Python script originated from the Blender operations log. As I shown in the previous section (see page 59),

it works properly only for the test scene configuration, where I have “recorded” these API statements. In this

section we will enhance this code so it will work for the user-selected objects. It will also become a more gen-

eral, so you will be able to specify the type of the Boolean operation for the boolean_operation() procedure.

Let’s start by setting the operation mode of the Boolean modifier. When you change this option, you will see

corresponding API statement in the Operations Log window (Figure 3.5.1):

Figure 3.5.1 API statements for selecting one of Boolean operations

It occurs that Blender API represents such enumerations as text keywords. You can alter the mode of a Boolean

modifier by setting its operation field to one of the three values: ‘INTERSECT’, ‘UNION’, or ‘DIFFERENCE’. Of

course, if you need , you can also get the current value of this modifier field – for example, in the Python

Console (Figure 3.5.2):

Figure 3.5.2 Getting the current setting of a Boolean modifier

For quick “discovering” the API classes and fields names corresponding to user interface elements, you can

enable in the Blender preferences window (Edit→Preferences) the Python Tooltips option (Figure 3.5.3):

Figure 3.5.3 Enabling Blender API tooltips

Operations Log

In Blender API options (in this case - of
the Boolean modifier) are represented by
keywords (of string type):

Current value of this field

Enable these options

62 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

From this moment, when you hover mouse cursor over any field on the screen, Blender will display information

about its class and Blender API “path” (expression) that references this item (Figure 3.5.4):

Figure 3.5.4 Python API tooltips

The modifier name (“Boolean”, in this case) is unique in the modifiers stack of a single object1. Note that

Blender API uses it as the index (keyword) for referencing elements of this stack (for example in the Apply

statement in Figure 3.3.7, on page 49). I used this observation in the new version of the boolean_operation()

procedure. I introduced here many enhancements (Figure 3.5.5):

import bpy

def boolean_operation (tool, op, apply=True):

 '''Performs a Boolean operation on the active object

 Arguments:

 @tool (Object): the other object, not affected by this method

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply (bool): apply results to the mesh (optional)

 '''

 obj = bpy.context.object

 bpy.ops.object.modifier_add(type='BOOLEAN')#adds new modifier to obj

 mod = obj.modifiers[-1]

 while obj.modifiers[0] != mod:

 bpy.ops.object.modifier_move_up(modifier=mod.name)

 mod.operation = op #set the operation

 mod.object = tool #activate the modifier

 if apply: #applies modifier results to the mesh of the active object (obj):

 bpy.ops.object.modifier_apply(apply_as='DATA', modifier=mod.name)

Figure 3.5.5 Improved modifier handling in the boolean_operation() procedure

I extended the argument list of this method with two new elements: op determines the kind of performed Boole-

an operation, while the optional apply flag allows for leaving the result as the dynamic modifier. To make this

code more readable, I assigned the active object reference to an auxiliary variable named obj.

1 When you add a new modifier, Blender gives it a unique name. For example, if I added another Boolean modifier to the modifier stack

shown in Figure 3.5.4, it would receive name Boolean.001. When the user changes the modifier name – Blender does not allow to type an

existing one.

The class and
field name

The Python expression that
returns the data displayed on
this screen

When you hover mouse cursor over a field on
the screen, Blender will show such a tooltip:

This loop moves the
newly added modifier
to the top of the list

obj is an auxiliary shortcut for the active object

Additional arguments: op, apply

mod represents our modifier (it is always added at the end of the list)

Instead of the fixed text, I use
the name of modifier mod

Chapter 3 Basic Python Script 63

Copyright Witold Jaworski, 2011-2019.

In the second local variable: mod I store the reference to the newly added modifier. Note, that initially I assign it

to the last element of the modifiers list. I do it, because I know that the object.modifier_add() operator always

places the newly added element in this position1. After this operation the modifiers list can contain one or more

elements. That’s why I replaced the single call to the object.modifier_move_up() operator with a loop. It moves

modifier mod toward the beginning of the list, until it reaches the first position. Because the modifier names are

created automatically, I cannot assume that the newly added Boolean modifier will receive name “Boolean”. If

there was another Boolean modifier in this list, the new one can be named “Boolean.001”, or similar. That’s

why instead of the fixed “Boolean” text, copied from the Operations Log line, I pass the value of mod.name to

the modifier_move_up() and modifier_apply() operators.

I also added optional argument apply to the boolean_operations() procedure. By default, the value of this flag

is True, which means that the result of modifier mod is applied to the object mesh. (As in the previous sections).

However, if you set it to False, the newly added modifier will remain as the first element of the modifiers list, and

the result of this procedure will remain “dynamic”. (It will be a quick method for adding Boolean modifiers).

Let’s try to modify the main code of our script so that it will use eventual other objects selected by the user as

the subsequent “tools”, applied to the active object. Thus, there is an elementary question: how to get the list of

currently selected objects? You cannot get a hint about it from the log window, because operators read this in-

formation internally from the environment data objects (unknown for us). Reasoning that such an information

should be a part of the “execution context” of this script, I assumed that it is in one of the bpy.context object

fields. Let’s look at the contents of this object, using the autocompletion window (Figure 3.5.6):

Figure 3.5.6 Browsing members of the bpy.context object

Unfortunately, PyDev does not displays tooltips for the fields, so let’s use .selected_object in our code and try

to find its description in bpy.pypredef (As it is shown in Figure 3.2.7 and Figure 3.2.8, on pages 41 and 42):

Figure 3.5.7 Searching for the description of the bpy.context.selected_objects field

1 This is my assumption, based on long experience: from programmer’s point of view, modifier “stack” is a list. (I have been using Blender

for many years). The operation of adding a new modifier is not documented. (The official manual often skips such trivial steps). If you want

to be more cautious than me – copy the obj.modifiers list before invoking modifier_add() operator, then compare their elements.

When you type the dot in this expression, PyDev
will open the list of its methods and fields

The name of this field looks promising, but
PyDev does not display field descriptions
in the tooltip window

https://docs.blender.org/manual/en/latest/modeling/modifiers/introduction.html#interface

64 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The bpy.context is a specific object, because its contents depend on the type of the Blender window that has

invoked your script (see page 141). What’s more, there are no descriptions for its fields – also in the official doc-

umentation (!). I had to rely on the comments from other users, which I found using the Internet search tool.

They said that the selected _objects represents the current selection set. However, in the header file of the

bpy module I also found another field with intriguing name: selected_editable_objects (Figure 3.5.8):

Figure 3.5.8 The bpy.context fields that I want to check

I would like to know the difference between these fields1. In the first trials that I conducted using the test *.blend

file, both fields returned identical results. Ultimately, I found the difference when I linked (File→Link) to the test

scene an object named Cone, from another Blender file2 (Figure 3.5.9):

Figure 3.5.9 The difference between the selected_objects and selected_editable_objects

It occurs that the selected_editable_objects list does not contain the linked objects – Cone, in this case. (In-

deed, you cannot edit properties of such an object – thus the name of this bpy.context field). However, I

checked that I still can use this linked object as the “tool” in the Boolean modifier.

• In this script I will use the bpy.context.selected_objects field for getting the list of the selected objects.

Fortunately, Blender API provides the selected_objects field practically in all contexts, as it does for the

bpy.context.object field. (The API documentation describes that both fields belong to the Screen context).

1 This is not a pure curiosity. In Blender 2.5 the operations log window showed only the operator statements, so you could not find out there

how to refer the active object in Blender API. The bpy.context was also undocumented (as it is now). That’s why I decided that for the

active object reference I will use the bpy.context.active_object field. A few months later I tried to append my script to one of the Blender

menus. I discovered then that in this case my code is invoked in a different context, in which bpy.context object has no active_object field!

That’s why in Blender 2.8 I am carefully checking the context fields that I am going to use in my script. On the other hand – it is a shame that

Blender Foundation has not documented this important part of the Blender API for nine years!
2 Blender can use every *.blend file as an external “datablock library” (a container for objects, meshes, materials, textures, nodes, …). You

can dynamically link any of these items to a scene in another Blender file.

It is wort to check, what is the
difference between these two lists

Outliner

Python Console

In 3D View window I selected 2 objects: Cone and Cube

Then in Python Console I listed of both bpy.context.selected* lists:

Cone is linked from another file selected_editable_objects does not contain linked objects

https://docs.blender.org/api/blender2.8/bpy.context.html
https://docs.blender.org/api/blender2.8/bpy.context.html

Chapter 3 Basic Python Script 65

Copyright Witold Jaworski, 2011-2019.

After this lengthy discussion about the potential information sources, I changed the main code (Figure 3.5.10):

selected = list(bpy.context.selected_objects)

selected.remove(bpy.context.object)

for tool in selected: #Apply each tool to the active object:

 boolean_operation(tool,'DIFFERENCE')

print("object_booleans.py: Done!")

Figure 3.5.10 Improved main code of the script

To perform given Boolean operation for each of the user-selected objects, I exclude the active (“target”) object

from this list. (Otherwise it would cause an error – as described on page 59). For this purpose, I copy the con-

tents of the bpy.context.selected_objects iterator into a static list, named selected. Then I removed from

selected the active object. Finally, I invoked the boolean_opeartion() procedure for every element of this

“shortened” list.

Let’s check now, if such a modified script works properly. I added to the test scene another object: Sphere.

Then I selected all these three objects in following order: Cylinder, Sphere, and Cube, and run the script. (I

made sure that the debug server is running, and clicked the Run Script button in Blender – as on pages 54, 55).

Figure 3.5.11 shows the initial state and the final result:

Figure 3.5.11 Final result of the modified script

There were no errors, and the script result looks properly.

Now undo these script results (Ctrl - Z) and select again Cylinder and Sphere. Then select also another object:

Lamp (see the test scene outline in Figure 3.5.9, page 64). Finally select object Cube (so it will be the active

object again). Our script will fail for such input data:

Figure 3.5.12 An error, caused by an attempt to use Lamp as the “tool” object

selected: static “working copy” of this list

Remove the active object from this working copy

Use this “shortened” selection list as the source of the “tool” objects

Run Script

3. Cube

1. Cylinder

2. Sphere

A recess and a hole
in object Cube

The error occurred in the last line of boolean_operation()

You cannot Apply an inactive modifier

66 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

What has happened? Boolean modifier ignores objects that does not contain mesh data, like Camera or Lamp.

In the result, the new modifier, added to the active object (Cube) with Lamp as the “tool”, will never become

active. That’s why Blender raises a runtime exception when the script attempts to call modifier_apply() proce-

dure for this (still disabled) modifier.

How to avoid such situations? You can check if the modifier is enabled just before calling the Apply operator.

However, I do not especially like this idea. In the future it may happen that Blender will raise a runtime exception

in the previous step, on the attempt to assign a Lamp object to the Boolean modifier. (In principle, this is an in-

valid operation). That’s why it is better to not invoke the boolean_operation() procedure for the objects of

wrong type. This applies not only to the improper type of the tool argument, but also to the other cases. For

example - I can easily imagine a situation in which a user selects by mistake Lamp as the active (target) object!

To precisely determine what object types accepts Boolean modifier, I added to the test scene two additional

objects: Cone, which is linked from another file, and Torus, which is a collection instance. (This collection is

hidden and contains just the source object). Figure 3.5.13 shows the current state of the test scene and its

structure in the Outliner window (set to View Layers view):

Figure 3.5.13 Additional objects in the test environment

Outliner shows the object types as icons. Our script needs this information for checking if the selected objects

contain meshes. But which of the Blender API fields returns the Blender object type?

In searching for this field, I used the Outliner window in the Data API view (Figure 3.5.14):

Figure 3.5.14 Outliner window (in Data API view)

3D View

View Layers

Outliner

Torus is an
instance

Cone is a
linked object

Object type

Data API

Here you can search (by name)
for particular datablocks

These are the lists exposed by
the bpy.data

Chapter 3 Basic Python Script 67

Copyright Witold Jaworski, 2011-2019.

The Outliner window in the Data API view shows the entire content of the current *.blend file. In principle this is

just a user interface for displaying contents of the bpy.data lists. When you expand the Objects collection, you

will find there all the scene objects. Now you can examine their fields (Figure 3.5.15):

Figure 3.5.15 Browsing the object data

I started browsing fields of the first object from the Objects list, searching for an item that displays object type.

(In this case it was a Camera). I quickly found a field that bears promising name Type (and the value: Camera). I

stopped my mouse over this item for a few seconds, so Blender displayed its description and API details. They

confirmed me that this is the field I need. (It seemed to return the correct information and was read-only). Using

the reference expression from the tooltip as the example, I quickly checked the type values of other objects:

Figure 3.5.16 Quick check of the type values in other objects

Look inside
this object…

… maybe this is the
field I am looking for?

Python tooltip:

It seems that Booelan modifier
requires ‘MESH’ objects

68 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

It occurred that Camera is an object of ‘CAMERA’ type, Lamp – ‘LIGHT’, and the Torus instance – ‘EMPTY’ (I

did not show this last case in Figure 3.5.16). All the other objects in the test scene are of ‘MESH’ type. It pre-

cisely matches the icons shown in the View Layer mode of the Outliner (see Figure 3.5.13). Thus, it seems that

the type field indeed contains the information we need. Let’s check it also in the API description (Figure 3.5.17):

Figure 3.5.17 Checking details of the Object.type field

Using PyDev tooltip link, I quickly found the Object.type declaration, as in figure above. Its description confirms

my observations. Conclusion: every object passed to boolean_operation() as the tool argument must be of the

‘MESH’ type.

I will not show this in another illustration, but I

also checked that Blender does not allow adding

modifiers to the objects linked from another file

(as the object Cone in our scene). This means

that we cannot point such a linked object as the

active (target) object for our script, because it will

cause an error. I also checked in Python console

that the type field returns ‘MESH’ value for the

local objects (as Cube) as well as the linked

objects (as Cone). So - how to recognize a linked object in the script?

To find such a “distinguisher”, I examined the Cone object fields (in the Data API view of the Outliner window). I

noticed there a field named library (Figure 3.5.19):

Figure 3.5.19 Reference to the source (library) file

Looking at the bpy API header declarations I can see that this library field returns a reference to an object of

Library class. It contains the full path to the source file and other details. However, the most important thing for

me is that for all local objects library returns None (I checked this in the console). So - this is the flag I need!

Figure 3.5.18 Types of the linked (Cone) and local (Cube) objects

I click the link in the
tooltip window…

PyDev automatically opens the corresponding
predefinition file and highlights field declaration

For a linked object, this field returns the source file

Python tooltip:

Chapter 3 Basic Python Script 69

Copyright Witold Jaworski, 2011-2019.

Using this information, I can update the main code of the script (Figure 3.5.20):

selected = list(bpy.context.selected_objects) #creates a static copy

active = bpy.context.object

if active in selected: selected.remove(active)

if active.type != 'MESH':

 print("Cannot execute: target object is not a mesh")

else:

 if active.library != None or active.data.library != None:

 print("Cannot execute: target object is linked from another file")

 else:

 for tool in selected: #Apply each tool to the active object:

 if tool.type == 'MESH':

 boolean_operation(tool,'DIFFERENCE')

 else: #at least mark this improper object to not repeat the error

 tool.select_set(False)

 print("bool_operation: Done!")

Figure 3.5.20 Validation of the input data (in the main code of the script)

For the greater code readability, I created auxiliary variable active and assigned it the active object reference.

After some trials I also discovered that in certain scenarios the active object is not among the selected objects.

That’s why I added a condition for this case in the next line. (Otherwise an attempt to remove object active from

list selected would raise a runtime exception).

In the further lines I am checking if the active object is of the ‘MESH’ type. If so – I am also checking if it is not a

linked object. Note that I am also testing if its mesh is not a linked datablock1. (I have found in the Outliner win-

dow that Object.data field returns the reference to its Mesh object).

Finally, when the active object seems to be OK, I am starting the loop for all the tool objects from list selected.

However, before invoking the boolean_operation() procedure I am checking if object tool is a mesh. If not – I

am excluding it from the actual (scene) selection, so the user will not use it again by a mistake. (The commands

that manipulate current selection set are not displayed in the Operations Log window. I have found in the API

documentation2 that I can use the select_set() method for selecting/deselecting scene object).

In the next section I will modify this code so it will “catch” all unexpected runtime errors. I will also improve read-

ability of the messages displayed by this script.

1 Sometimes it may happen that a local object uses the mesh data linked from another file. You can, for example, “paint” this mesh using a

local material assigned to the object, not the object data.
2 In the case of other “selectable” datablocks – for example, mesh vertices or edges – you can find in Outliner a field named select, which

you can set to True/False. The bpy.types.Object class, which represents a scene object, also had such a field in the previous Blender

versions. Thus I opened Blender 2.8 Release Notes, which describe all the changes introduced in this new version. On this page I found

section about the changes in the API. There I entered Scene and object API subsection, where I ultimately discovered a fragment about this

issue. I think that this change is related to the *.blend file architecture modifications. In Blender 2.8 each View Layer (aka render layer in the

API) preserves its own selection set. Every View Layer also contains instances (references) to the scene objects. They are represented by

the bpy.types.ObjectBase class. In this class you can find the “classic” select field, which controls the object selection state in the “host”

view layer. Another field of the ObjectBase class is object, which returns reference to the scene object (instance of the bpy.types.Object

class). You can find the list of the objects (“object bases”) from the current view layer in the following bpy.context iterators:

selectable_bases, editable_bases, visible_bases, selected bases, active base.

active: auxiliary shortcut to the active object

Sometimes the active object is not among the selected!

Checking the type of the active object

Is the active object (or its mesh) linked from another file?

Checking the type of the “tool” object

Exclude the object of wrong type from the selected objects

https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API#Object_Selection_and_Hiding
https://wiki.blender.org/wiki/Reference/Release_Notes/2.80/Python_API/Scene_and_Object_API#Object_Selection_and_Hiding

70 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Summary

• The Python Tooltips option (page 62) is a great tool for learning Blender API fields directly from the screen.

You can enable it in Blender Preferences (page 61);

• Blender always appends a new datablock to the corresponding datablock list. This rule also applies to the

object modifiers list. That’s why you can assume that the newly added modifier is always in the last ele-

ment of this list (as I did on page 62);

• Blender also enforces the uniqueness of datablock names. That’s why I pass the modifier datablock name

to the operators (page 62); I do not need to know this name – it is just an id, created and managed by

Blender;

• There are several fields (iterators) in the bpy.context class that provide information about currently select-

ed objects. You can find them in the PyDev autocompletion window (page 63). Unfortunately, they are not

documented. Usually you will use the bpy.context.selected objects iterator. However, if you need a list

without eventual linked objects or object instances – use selected_editable_objects (page 64). In other

cases, a more useful can be selected_bases: it returns the references (instances of the ObjectBase

class) to the objects used int the current view layer. Anyway, it is a good practice to check the contents of

such an iterator in a test scene, before using it in the code;

• Some information about the API objects is not displayed in in the operations log window or in the screen

tooltips (for example: scene object type). To read it, you can use the Outliner window in the Data API view

(page 66). In this window you can browse the entire contents of the current *.blend file. You can get the Py-

thon expression for any field in this structure using the tooltip window. (Python tooltips are also available in

the Outliner – see page 67);

• Use the bpy.types.Object.select_set() method to switch the selection state of a scene object (to select-

ed/not selected – see page 69). To get the current selection state, use another function (method):

select_get().

Chapter 3 Basic Python Script 71

Copyright Witold Jaworski, 2011-2019.

3.6 Handling the runtime errors and user messages

Looking at the result of the previous section (Figure 3.5.20, page 69) you can notice that the input validation

occupies most of the script. (This proportion is especially striking when you compare this code with its earlier

version, shown in Figure 3.5.10 on page 65). Finding the invalid data is important, but equally important is prop-

er user notification about the reasons of aborting the requested action. (“Proper” means that the user should

understand the reason and know how to avoid it in the future). In this section I will try to make this code as “er-

ror-proof” as possible1 and improve the error messages. These changes will be also useful in the next chapter,

when I will convert this script into a Blender add-on.

Let’s start with handling the error messages. I think that it would be helpful to add an additional hint: the object

name, where it is applicable. In this way we increase the chance that the user will notice and understand the

mistake she/he has made. Figure 3.6.1 shows a new version of the main code. (Its results are exactly the same

as the results of the code from page 69: I just changed the structure):

#result constants:

INPUT_ERR = "cannot execute"

ERROR = "run-time error"

WARNING = "warning"

SUCCESS = "completed"

def main (op, apply_objects=True):

 ''' Performs a Boolean operation on the active object, using the other

 selected objects as the 'tools'

 Arguments:

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply_objects (bool): apply the results to the mesh (optional)

 @returns (list): one or two message parts: [<flag>, Optional_details]

 '''

 selected = list(bpy.context.selected_objects) #creates a static copy

 active = bpy.context.object #active object

 if active in selected: selected.remove(active)

 if active.type != 'MESH':

 return [INPUT_ERR, "target object ('%s') is not a mesh" % active.name]

 else:

 if active.library != None or active.data.library != None:

 return [INPUT_ERR, "target object ('%s') is linked from another file"

 % active.name]

 else:

 for tool in selected: #Apply each tool to the active object:

 if tool.type == 'MESH':

 boolean_operation(tool,op, apply_objects)

 else: #at least mark this improper object to not repeat the error

 tool.select_set(False)

 return [SUCCESS]

#main code:

result = main('DIFFERENCE')

print("bool_operation --> %s" % str.join(": ",result))

Figure 3.6.1 Main script, modified

The main code of the script should be short and readable, so I grouped most of the lines written in previous

section into new function named main(). (It will be easier to make calls to this function in the add-on code). The

main() function returns a list, which first element is a flag. It can be one of the four constants (string keywords)

that I declared for this purpose. When there are no issues – main() returns a single-element list that contains

the SUCCESS constant. Otherwise, in the second element of the result list you will find an error message.

1 Remember, that “the user” can also mean just you! It is enough that you will try to run this utility after a long break (several months or

longer). I think that you will not remember anything of the specifics of this script.

Constants, returned in the first element of the main() function result

further in this text I will use ERROR
and WARNING constants

I added the object name in the message

Temporary “diagnostic” statement

A minimal main script code

72 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

I reduced the script main code to two lines: the first calls the main() function, the second displays the result

(actually it prints it in the console – see the last lines in Figure 3.6.1). In this way I separated the message for-

matting (in the main() function) and displaying (in the script main code). This is always a more flexible solution

than placing the print () statements everywhere. In this script the only print() statement is in the last, temporary

line. In the future, when I use main() in the Blender plugin code, I will display eventual messages in completely

different way.

I also composed the scene object names into the error messages. I think that this additional hint will help the

user to find out what she/he did in a wrong way. Figure 3.6.2 shows the script results, obtained for various com-

binations of the selected objects. (I did these tests in the scene as in Figure 3.5.13 on page 66):

Figure 3.6.2 Results of the script, for various variants of the active object

Then I added further tests to the main() function: they validate the remaining (“tool”) objects in the current selec-

tion set (Figure 3.6.3). Because each of them ends with a return expression, I could replace the nested if: else:

statements with a more linear structure. (For a greater number of simple exclusions, such multiple-level nested

conditions are less readable):

 selected = list(bpy.context.selected_objects) #creates a static copy

 active = bpy.context.object #active object

 if active in selected: selected.remove(active)

 #input validation:

 if active.type != 'MESH':

 return [INPUT_ERR, "target object ('%s') is not a mesh" % active.name]

 if active.library != None or active.data.library != None:

 return [INPUT_ERR, "target object ('%s') is linked from another file" %

 active.name]

 if not selected:

 return [INPUT_ERR, "this operation requires at least two objects"]

 #main loop

 skipped = []

 for tool in selected: #Apply each tool to the active object:

 if tool.type == 'MESH':

 boolean_operation(tool,op, apply_objects)

 else:

 skipped.append(tool.name)

 #let's look at the results:

 if not skipped: return [SUCCESS]

 if len(skipped) < len(selected): #still there are a few procesed objects"

 return [WARNING, "completed, but skipped non-mesh object(s): '%s'" %

 str.join("', '",skipped)]

 else: #no object was processed:

 return [INPUT_ERR, "non-mesh object(s) selected: '%s' " %

 str.join("', '",skipped)]

Figure 3.6.3 Further modifications in the main() function

Before running the main loop, I am checking if the selected list is empty (it may happen, if the user selected just

a single object). If so – I signalize an error.

Instead of excluding the non-mesh objects from the current selection set (as in Figure 3.5.20, page 69), I decid-

ed to enumerate their names in a warning message. For this purpose, I am collecting them in an auxiliary list

named skipped. If there has been at least one “tool” object processed in the loop – I signalize them in a warn-

ing. Otherwise I use the same text as an error message.

Active object: linked from another file

Active object: a collection instance (Torus)

Active object: Cube (local mesh)

Each of these conditional statements quits this function, so I
resigned from nesting them with the “else:” statements

Checking if the selection set is empty

Auxiliary list for the not processed “tool” objects

Add this object name to the skipped list

If there is no skipped object: that’s OK.
Otherwise signalize a warning or an error

Chapter 3 Basic Python Script 73

Copyright Witold Jaworski, 2011-2019.

Figure 3.6.4 shows the results of the further tests, executed for various combinations of the selected objects. (I

did these tests in the scene as in Figure 3.5.13 on page 66):

Figure 3.6.4 Further tests of the script

I do not have any illusions that these five validation tests that I have already implemented will allow me to avoid

all possible runtime errors. To have at least marginal control over remaining runtime exceptions, I placed the

whole code of the main() function into a try: … except: statement (Figure 3.6.5):

import traceback #for error handling

def main (op, apply_objects=True):

 ''' Performs a Boolean operation on the active object, using the other

 selected objects as the 'tools'

 Arguments:

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply_objects (bool): apply results to the mesh (optional)

 @returns (list): one or two message parts: [<flag>, Optional_details]

 '''

 try:

 except Exception as err: #Just in case of a run-time error:

 traceback.print_exc()

 cntx_msg = ""

 if 'active' in locals(): cntx_msg += "occured for object(s): '%s'" %

 active.name

 if 'tool' in locals(): cntx_msg += ", '%s'" %tool.name

 return [ERROR, "%s %s" % (str(err),cntx_msg)]

Figure 3.6.5 “Catching” eventual runtime exceptions in the main() function

I use an except: statement that will “catch” every type of Python exception and place it in the err variable. Then

the traceback.print_exc() function will print in the console the standard, detailed traceback information about

the Python stack in the moment of raising this exception. This is a diagnostic message intended for the pro-

grammer (i.e. for me), which will normally appear only in the Blender system console window.

For the user I format an additional text about the context of this error. I use for this purpose a helper variable

named cntx_msg. I suppose that most of the runtime errors will occur in the “core” code of the

boolean_operation() procedure. That’s why I am trying to place in cntx_msg the names of the active object

and the current tool object. Of course, an error can also appear in the other parts of this code. That’s why be-

fore placing the active and tool object names into the message I am checking, if they are defined at all. (If their

names are in the locals() collection).

Selected: Cube (only)
 Selected: Cone and Torus + Cube

Selected: Torus + Cube

…

the code of this function - as in Figure 3.6.3 (page 72)

…

…

“Catch” every kind of exception into variable err

Print the “traceback” information in console (as in the Python standard)

I am using the print_exc() function from this module

Format the message fragment containing names of the selected objects

Error message: the standard text +
eventual information about the context

Check, if this local variable exists

74 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

I did not have to wait a long time for an unexpected error, which would allow me to check this newly added try:

… except: statement. It was enough to create clones of objects Cube and Cylinder. (Such objects, like Cube

and Cube (clone), share the same mesh named Cube – as it is shown in Figure 3.6.6):

Figure 3.6.6 Clone of the Cube object (mesh data, shared between two objects)

Then I selected objects: Cylinder (clone) and Cube (clone) and run the script. Figure 3.6.7 shows the result:

Figure 3.6.7 Script result for a clone object

Fine. I can see that “runtime error catching” works properly. As intended, the main() function has returned the

error message that contains the object names. I have just completely forgotten that Blender does not allow to

apply modifier results to a shared mesh. Thus, let’s introduce a fix to the last lines of boolean_operation()

(compare the code below with the code shown in Figure 3.5.5 on page 62):

 if apply:

 if obj.users > 1 or obj.data.users > 1:

 bpy.ops.object.select_all(action='DESELECT')

 obj.select_set(True) #select obj, only

 bpy.ops.object.make_single_user(type='SELECTED_OBJECTS',

 object=True, obdata=True)

 bpy.ops.object.modifier_apply(apply_as='DATA', modifier=mod.name)

Figure 3.6.8 Creating a local copy of a mesh before invoking the modifier_apply() operator (last lines of boolean_operation())

object Cube

object Cube (clone)

These two objects share the
same mesh, also named Cube

object Cylinder (clone)

The error occurred in boolean operation() procedure,
in the line that invokes operator modifier_apply()

This is the message returned
from the main() function

Result of
print_exc()

The users field is the datablock “user counter” – I have found them in Outliner

Because of this keyword, I am
selecting only the active object

Chapter 3 Basic Python Script 75

Copyright Witold Jaworski, 2011-2019.

Before invoking operator modifier_apply(), I am checking if the mesh reference counter (users field) of the

active object and its mesh are greater than 1. If so, I am creating its copy (by invoking make_single_user()).

You can get lost after all these changes. To stay “on the track”, see below the complete script code:

import bpy

import traceback #for error handling

def boolean_operation (tool, op, apply=True):

 '''Performs a Boolean operation on the active object

 Arguments:

 @tool (Object): the other object, not affected by this method

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply (bool): apply results to the mesh (optional)

 '''

 obj = bpy.context.object #active object

 bpy.ops.object.modifier_add(type='BOOLEAN')#adds new modifier to obj

 mod = obj.modifiers[-1] #new modifier always appear at the end of this list

 while obj.modifiers[0] != mod: #move this modifier to the first position

 bpy.ops.object.modifier_move_up(modifier=mod.name)

 mod.operation = op #set the operation

 mod.object = tool #activate rhe modifier

 if apply: #applies modifier results to the mesh of the active object (obj):

 if obj.users > 1 or obj.data.users > 1: #obj has to be a single-user datablock

 #make sure, that obj is the only selected object:

 bpy.ops.object.select_all(action='DESELECT') #deselect all

 obj.select_set(True) #select obj, only

 bpy.ops.object.make_single_user(type='SELECTED_OBJECTS',

 object=True, obdata=True)

 bpy.ops.object.modifier_apply(apply_as='DATA', modifier=mod.name)

#result constants:

INPUT_ERR = 'cannot execute'

ERROR = 'run-time error'

WARNING = 'warning'

SUCCESS = 'completed'

def main (op, apply_objects=True):

 ''' Performs a Boolean operation on the active object, using the other

 selected objects as the 'tools'

 Arguments:

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply_objects (bool): apply results of the Boolean operation to the mesh (optional)

 @returns (list): one or two message parts: [<flag>, Optional_details]

 '''

 try:

 selected = list(bpy.context.selected_objects) #creates a static copy

 active = bpy.context.object #active object

 if active in selected: selected.remove(active)

 #input validation:

 if active.type != 'MESH':

 return [INPUT_ERR, "target object ('%s') is not a mesh" % active.name]

 if active.library != None or active.data.library != None:

 return [INPUT_ERR, "target object ('%s') is linked from another file" % active.name]

 if not selected: return [INPUT_ERR, "this operation requires at least two objects"]

 #main loop

 skipped = []#auxiliary list for the skipped object names

 for tool in selected: #Apply each tool to the active object:

 if tool.type == 'MESH':

 boolean_operation(tool,op, apply_objects)

 else: #store the name of the skipped object

 skipped.append(tool.name)

 #let's look at the results:

 if not skipped: return [SUCCESS]

 if len(skipped) < len(selected): #still there are a few procesed objects"

 return [WARNING, "completed, but skipped non-mesh object(s): '%s'"

 % str.join("', '",skipped)]

 else: #no object was processed:

 return [INPUT_ERR, "non-mesh object(s) selected: '%s' " % str.join("', '",skipped)]

 except Exception as err: #Just in case of a run-time error:

 traceback.print_exc() #print the Python stack details in the console (for you)

 cntx_msg = "" #format the diagnostic message:

 if 'active' in locals(): cntx_msg += "occured for object(s): '%s'" % active.name

 if 'tool' in locals(): cntx_msg += ", '%s'" %tool.name

 return [ERROR, "%s %s" % (str(err),cntx_msg)]

#main code:

result = main('DIFFERENCE')

print("bool_operation --> %s" % str.join(": ",result))

Figure 3.6.9 Complete code of the current script version

76 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Note that I placed all the input data validation and eventual error message handling in the main() function. This

auxiliary code occupies more lines than the core action, grouped in the boolean_operation() procedure. This is

a typical proportion in the programs, which must interact with the most unpredictable element: the user .

At this moment the only remaining explicit (i.e. entered “manually” in the code) parameter of this script is the

Boolean operation type (‘DIFFERENCE’). In the next chapter I will create a simple user interface which will al-

low the users to choose this value from a menu. It will be a part of the Blender add-on code.

Summary

• I placed into a function named main() the whole main script code, prepared in the previous section, This

function returns a list that contains: the result keyword and eventual error message (page 71). Such a func-

tion can be easily integrated into the Blender add-on;

• It is a good idea to provide a hint about the operation context in the warning and error messages. In the

case of this script these are the names of the active object and (usually) the “tool” object that caused the

signalized problem (pages 72 and 73);

• To handle (in a minimal form) all the unexpected runtime errors, place in the main() function the try: ...

except: statements (page 73);

Chapter 4 Converting API Script into Blender Add-On 77

Copyright Witold Jaworski, 2011-2019.

Chapter 4. Converting API Script into Blender Add-On

Probably you know the Blender preferences window (Edit→Preferences). I suppose that you already looked at

the Add-ons tab:

Every Blender add-on is a special Python script. This window allows you to compose the “working set” of

plugins (add-ons) according to your current needs. During initialization, an add-on can add new elements to the

user interface: buttons, menu commands, and panels. In fact, the whole Blender UI is written in Python, using

the same API methods that are available for the plugins.

In this chapter, I will show you how to convert our Blender API script into a Blender plugin. This add-on will add

to the Object menu the “destructive” Boolean commands (Difference, Union, and Intersection).

Click here to enable/disable an add-on

78 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

4.1 Adaptation of the script structure

So far, our script was "linear" - it executed what was written in the main code, from the beginning to the end.

The Blender plugins work differently, as you will see it in this section. Therefore, their code must have a specific

structure.

Let’s begin with the plugin “nameplate”. Each Blender add-on must contain a global variable bl_info. It is a dic-

tionary of strictly defined keys: „name”, „autor”, „location”, etc. Blender uses this structure to display the in-

formation in the Add-Ons tab (Figure 4.1.1):

#--- ### Header

bl_info = {

 "name": "Boolean operations",

 "author": "Witold Jaworski",

 "version": (0, 5, 0),

 "blender": (2, 80, 0),

 "location": "Object > Boolean",

 "support": "TESTING",

 "category": "Object",

 "description": "Simple, 'destructive' Boolean operations on active object",

 "warning": " Still in the 'beta' version - use with caution",
 "wiki_url": " http://airplanes3d.net/scripts-258_e.xml",
 "tracker_url": " http://airplanes3d.net/scripts-258_e.xml",
 }

Figure 4.1.1 The bl_info structure and its pane in the Preferences window

You can leave some of these keys with empty strings — for example the documentation and bug tracker

addresses („wiki_url”, „tracker_url”). Be careful with the „category” value: use here only the names that are

visible on the category list (in the Add-ons tab). If you use anything that is not there — your add-on will be only

visible in the All category.

This plugin will expose our main() method as a new Blender command. To make it possible, we have to

“embed” this procedure into a simple operator class (Figure 4.1.2):

#--- ### Operator

class OBJECT_OT_Boolean(bpy.types.Operator):

 ''' Performs a 'destructive' Boolean operation on the active '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Performs selected Boolean operation on actve object"

 def execute(self,context):

 main('DIFFERENCE')

Figure 4.1.2 The operator class, “wrapped around” the main() procedure.

I named this class according the API guidelines: OBJECT_OT_Boolean. Each new operator you define must

inherit the abstract bpy.types.Operator class. Otherwise, it will not work properly.

GUI command name (for the menu, or a button)

Command description, displayed in the tooltip

"name"

"category"

"support"

"warning"

"description"

"location"

"author"

"version"

"wiki_url" "tracker_url"

At this moment, the user still cannot select the operation

Here you determine the name of this operator for the
Blender API: bpy.ops.object.boolean(). (Lower case!)

https://docs.blender.org/api/master/info_best_practice.html

Chapter 4 Converting API Script into Blender Add-On 79

Copyright Witold Jaworski, 2011-2019.

The operator must have two class fields: bl_idname and bl_label (Figure 4.1.2). I also suggest setting another:

bl_description. (If it is missing, Blender displays in the command tooltip the docstring comment you have

placed below the class header). At the beginning, our class contains a single method, with a strictly specified

name and parameter list: execute(self, context). Inside it I placed the call to the main() function, still passing

the fixed ‘DIFFERENCE’ in the op argument (just for the tests). We will handle the result of this function later.

To register in Blender a class (or classes) from your module, you must add to the script two special functions,

responsible for this operation. This code usually looks always the same: first, import from the bpy.utils module

methods that register/unregister an API class. Then use them in your script, in the two methods named

register() and unregister() (Figure 4.1.3):

#--- ### Register

from bpy.utils import register_class, unregister_class

def register():

 register_class(OBJECT_OT_Boolean)

def unregister():

 unregister_class(OBJECT_OT_Boolean)

#--- ### Main code

if __name__ == '__main__':

 register()

Figure 4.1.3 Registering the Blender API class from this script

• Every Blender add-on must implement two procedures named register() and unregister(). They have no

parameters and return nothing, as in Figure 4.1.3.

Let's check how does such modified script work. Make sure, that the PyDev debug server is active. Prepare a

test environment in Blender, then press the Run Script button (Figure 4.1.4):

Figure 4.1.4 Launching our add-on in the debugger.

I added these lines as a precaution (during the
add-on initialization, the name of actual module
— __name__ — is never = ‘__main__’)

…

Remaining script code

…

The required code that registers add-on class (or
classes) for the Blender API

Import from bpy.utils these two
procedures

Select the objects

Click Run Script

80 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

It seems that the execution of this script was completed without any error. However, there is no hole in object

Cube! What is going on? Add a breakpoint to the execute() method, and run this script again. Nothing happens,

and the code execution has not stopped at this breakpoint (Figure 4.1.5):

Figure 4.1.5 The state of the debugger after running the add-on script

Actually the main script code does not call the main() procedure. It just registers a new Blender command

(operator), under the name that you have assigned to the bl_name field. In our case this is „object.boolean”

(see page 78, Figure 4.1.2). Check in the Python console, whether the bpy.ops.object.boolean method exists

(Figure 4.1.6):

Figure 4.1.6 Checking results of the add-on registration

Now you can add this new operator to a Blender menu or a panel button. We will deal with the GUI integration

subject in the next section of this chapter. For now, just call this command “manually” — from the Python

Console (Figure 4.1.7):

Figure 4.1.7 Call the operator…

.. because the Python call stack is empty!
However, debug server is still active and
ready to start a new Blender debug session

This time type the operator name as a
Python method — with the „()” at the end

It seems that the script
execution is completed…

… even though I set
the breakpoint here!

… but the execute() method has
not been called, yet!

Enter the operator name …

… in response, Python displays its “declaration”

Chapter 4 Converting API Script into Blender Add-On 81

Copyright Witold Jaworski, 2011-2019.

This time the Blender window has become locked, and the PyDev debugger is activated. It is waiting at the

breakpoint we have placed in the execute() method (Figure 4.1.8):

Figure 4.1.8 …and the debugger will stop its execution at your breakpoint

We have simulated here how Blender invoke our operator. When you call the bpy.ops.object.boolean() meth-

od (usually from a menu or a panel button), Blender will create a new instance of the OBJECT_OT_Boolean

class. Blender uses this object just to invoke its execute() method. After this, the instance of this API class is

immediately released (discarded). Such a “method of cooperation” („do not call us, we will call you”) is typical for

the all event-driven graphical environments.

By the way: note the arguments of this procedure, exposed in the Variables pane. Expand the context parame-

ter to see what kind of information you can get from this object (Figure 4.1.9):

Figure 4.1.9 Previewing the context of this call

The context structure may contain different fields for different Blender windows. Examine it, because some-

times you can discover something interesting. For example — what is the difference between the object and

edit_object fields? Unfortunately, you still can find nothing about them on the Blender API pages.

We can start tracking the
code from this point!

In this mode, the context contains
not only the reference to the
active_object, but also two other
fields — edit_object and object.

http://www.blender.org/documentation/250PythonDoc/contents.html

82 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Let’s examine in the Variables pane the self object. Note that the OBJECT_OT_Boolean class has a different

base class, here. It also has a different value in the bl_idname field (Figure 4.1.10):

Figure 4.1.10 The content of the operator class (self)

Well, this is normal: Blender API modified this class “on the fly”. It seems that Blender used the bl_idname val-

ue („object.boolean”) to name the new base class of this operator, named OBJECT_OT_boolean. (The

„object” is in the uppercase, and the dot („.”) was replaced with „_OT_”). When you examine the content of the

bpy.types namespace (typing dir(bpy.types) in the Python Console, for example), you will see plenty of un-

documented classes! Their names always contain „_OT_”, „_MT_”, or „_PT_”. They are the operators, menus

and panels created by the internal Blender GUI scripts.

By the way: look at the current state of the Python

script stack (Figure 4.1.11). Compare it with the stack

that is shown in Figure 3.4.7 (page 55) or in Figure

3.4.9 (page 56).

At the bottom of the stack, you can see the functions

of the Python Console (it seems that a large part of

its code is also written in Python). Then there is a

single line from a „<blender console>” module. (PyD-

ev converted by a mistake the “<>” characters in its

name into “<>”) This is my call of the operator

object.boolean() that I typed in the console. As you

can see, it called a method from the ops.py Blender

module, which in turn created this instance of our

OBJECT_OT_Boolean class and called its

execute() method.

Figure 4.1.11 The stack of the operator called from the console

Note a different value of the bl_idname field.
It repeats in in the base class name

Python Console internal
methods

Line that I typed
in the console

Call to execute()

Chapter 4 Converting API Script into Blender Add-On 83

Copyright Witold Jaworski, 2011-2019.

When you finish the last step of the execute() function (Step Over — F6) PyDev can ask you about the source

file for the line typed in the console (Figure 4.1.12). Ignore this request, clicking Cancel:

Figure 4.1.12 PyDev request that may occur when you leave the .execute() method using Step Over command

Now I will show you the behavior of the PyDev debugger in the case of a runtime error in the add-on. When you

leave the execute() method, the highlight disappears from the current line (Figure 4.1.13):

Figure 4.1.13 The state of the debugger in the case of a runtime error

In the same time the debugger prints a message in the console, providing the file name and the line number

where the runtime error has occurred. Despite this, the script execution is not completed, yet. In the Debug

panel you still can see the contents of the stack. In the Variables panel you can check the current status of the

global variables. However, the more important local variables are already removed from the stack.

PyDev asks for the source code of the line
that I typed in the Python Console

Ignore this request

The highlight of the current line has disappeared

… the script execution is not finished,
yet: you can see the global variables:

In the Blender console (Window→Toggle
Console) you can see the error message

84 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In such a case, if you want to terminate the script execution - use the Resume command (F8). Then you will

see in the console the standard traceback information (Figure 4.1.14):

Figure 4.1.14 The full information about the runtime exception

• When you invoke an operator from the Python Console, the eventual error information will appear below

your call, as in Figure 4.1.14. When you invoke it form a Blender GUI control — a menu or a button — the

error message will appear in the Blender System Console1.

In the error message shown in Figure 4.1.14 Blender writes that it expects from the execute() function a (Py-

thon) set instead of the None value. Indeed, in a hurry while writing this code I have forgotten completely that

the execute() function must return one of the enumeration values, declared in the API. Usually it returns a sin-

gle-element set that contains a 'FINISHED' or ‘CANCELLED’ string. (You can find this enumeration in the base

class declaration: bpy.types.Operator, in bpy.pypredef). OK, so let's fix this script right now (Figure 4.1.15):

Figure 4.1.15 A quick fix of the code — directly in the Debug perspective

Then just save this modified script on the disk.

1 System Console is an auxiliary (diagnostic) Blender window (i.e. another OS window) which is available for the current Blender session.

You can turn its visibility on/off using the Windows→Toggle System Console command. In Blender 2.8 you cannot close this window using

the standard [x] button. (In the previous Blender versions when you inadvertently clicked this button, you quit Blender).

This is the same message that was
printed before the script terminated

Function execute() must return a
set containing one of the strictly
defined text keywords

Chapter 4 Converting API Script into Blender Add-On 85

Copyright Witold Jaworski, 2011-2019.

When you save the script, PyDev also updates the script code that is currently loaded in Blender. You can see

information about these updates in the Eclipse and Blender system console (Figure 4.1.16):

Figure 4.1.16 Information about automatic updates of the script code that is actually loaded in Blender

Regardless of this you can still click the Run Script button if you want to unregister/register the add-on.

When the script code is updated, invoke the object.boolean() operator again (Figure 4.1.17):

Figure 4.1.17 Another test of the fixed script

As you can see, after this minor code correction our operator works properly.

If you click the Step Over (F6) command over the last line of an add-on “public” method, like execute() – the

debugger will step to an internal Blender module named ops.py (Figure 4.1.18):

Figure 4.1.18 The internal module ops.py, opened after execution of the last script line

This module invoked the execute() function from our script (see Figure 4.1.11, page 82). In such a case just

Resume (F8) this execution, letting Blender to perform all closing steps.

1. If you are not sure if PyDev
updated the script code, click
Run Script to update it manually

2. Invoke the operator
again

The result — this
time without errors.

Note that the previous error
occurred in this line (200)

Current line

86 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Finally let’s make a small but important modification to function main(): instead of the “static” bpy.context ob-

ject, use the context which Blender passes as the parameter of the execute() function. They can be different in

certain cases! For example – Blender API documentation allows for invoking operators with so-called overridden

context. That’s why I added to main() another argument, named cntx (Figure 4.1.19):

def main (op, apply_objects=True, cntx=None):

 ''' Performs a Boolean operation on the active object, using the other

 selected objects as the 'tools'

 Arguments:

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply_objects (bool): apply results of to the mesh (optional)

 @cntx (bpy.types.Context): overrides current context (optional)

 @returns (list): one or two message parts: [<flag>, Optional_details]

 '''

 try:

 if cntx == None: cntx = bpy.context

 selected = list(cntx.selected_objects) #creates a static copy

 active = cntx.object #active object

 if active in selected: selected.remove(active)

 #input validation:

Figure 4.1.19 Modification of function main() – adding optional cntx argument

I modified just the few first lines of this function. Then in the operator class I passed in the cntx argument the

context which function execute() receives from Blender (Figure 4.1.20):

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a Boolean operation on the active object '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Performs a Boolean operation on active object"

 def execute(self, context):

 main('DIFFERENCE', cntx = context)

 return {'FINISHED'}

Figure 4.1.20 Modification of function execute() – passing the current context object to function main()

In next section I will add this operator to the Object menu.

…

Remaining code

…

By default, cntx refers
to the “static” context

Additional, optional argument

Passing the actual context object

https://docs.blender.org/api/master/bpy.ops.html

Chapter 4 Converting API Script into Blender Add-On 87

Copyright Witold Jaworski, 2011-2019.

Summary

• Each add-on must contain the bl_info structure (page 78). This is the „nameplate”, used by Blender to

display information about this plugin in the Blender Preferences:Add-Ons tab;

• You can convert a procedure that changes Blender data (like our main()) into Blender operator. It involves

declaration of a class that derives from bpy.types.Operator. Place the call to the data-updating procedure

inside the execute() method of this new class (page 78);

• Each add-on must implement the register() and unregister() script methods (page 79);

• When you run the add-on script, it just registers its presence in Blender API (page 80). You still have to

invoke its operator — for example, using the Python Console (pages 80 - 81). In response to this call,

Blender creates a new instance of the operator class, an invokes its execute() method;

• In the case of an add-on, the Run Script button re-registers the latest version of the script. (It calls the

unregister() method for the old version, and then the register() method from the new one — see pages

85, 160);

• When you have modified and saved the add-on file during a debug session – PyDev will update it also in

Blender. You can see the messages about it in the Eclipse and Blender system console1 (page 85). When

they state that the code has been successfully updated – you do not need to reload this add-on “manually”,

using the Run Script button;

• In case of script runtime error (when a runtime exception has been thrown), PyDev debugger breaks the

execution (page 83). In this moment you can examine the state of the global Python variables. You can al-

so check the error message in the Blender system console. The same text will be displayed in the Eclipse

and Blender console when you terminate this script using the Resume command (page 84);

• The information about the environment of the called operator — current selection, active object, etc. — is

passed to the execute() function in the context argument (page 81);

1 I mean here the Blender System Console window. Do not confuse it with the Python Console! It is useful to make this window visible

(Window→Toggle System Console) before running an API script or an add-on. It displays various diagnostic output (in particular: the output

from the print() statements in your script). This is often very helpful, since the main Blender window is “frozen” until the script terminates.

88 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

4.2 Adding operator command to a Blender menu

As you probably noticed in previous section, Blender API requires your operator class to implement strictly de-

fined methods. This is a kind of a "contract" between your script and the Blender core system. You agree to

implement required functions in your class. Blender agrees to call them in the strictly defined circumstances.

In the object-oriented programming such a list of contracted functions and properties is called "interface". To

help you a little in its implementation, Blender API delivers the base class for derived operators, named

bpy.types.Operator1. In the object-oriented programming jargon, Operator is so-called "abstract class". It just

provides the default, empty implementations of all the methods required by the interface. Our operator class

inherits this default content from its base (bpy.types.Operator). That’s why it is possible to implement (override,

in fact) in the OBJECT_OT_Boolean just these Operator methods, which are specific for the derived class.

So far, I overrode the single Operator.execute() method. It calls the main() function but ignores the eventual

error message that it receives in the result of this call. I did it because in certain situations Blender can repeat-

edly call this method, for the same context but with different input parameters. (You will see such a case in the

next section). Therefore, it is not good place for the result validation, and certainly not for displaying eventual

messages. You better implement such a communication in another method of the Operator interface: invoke()

(Figure 4.2.1):

#result constants:

INPUT_ERR = 'ERROR_INVALID_CONTEXT'

ERROR = 'ERROR'

WARNING = 'WARNING'

SUCCESS = 'OK'

#--- ### Operator

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object'''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 def execute(self, context):

 main('DIFFERENCE', cntx = context)

 return {'FINISHED'}

 def invoke(self, context, event):

 result = main('DIFFERENCE', cntx = context)

 if result[0] == SUCCESS:

 return {'FINISHED'}

 else:

 self.report(type = {result[0]}, message = result[1])

 return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.2.1 Validation and user communication — in the invoke() method

Function invoke() returns the same codes as the codes returned by the execute() function. In this

implementation it checks the result returned by function main(). When main() signalizes a success – it returns

‘FINISHED’ (even if a warning has occured). In the case of errors it returns 'CANCELLED'. For displaying

eventual messages I use API report() function. (I adjusted the result constansts to conform its type argument).

1 In addition to the Operator interface, Blender API provides two other interfaces (abstract classes): Menu and Panel. Obviously, they are

intended for corresponding elements of the user interface. You can find their declarations in the bpy.types module, as you can see these

base classes in the PyDev autocompletion suggestions.

Method report() displays a message on the screen (in a “box”)

Blender can call function invoke(), when you click a menu
item or a button. However, after this first call, in certain
situations it also can call execute().

I do not use the event argument in this script. It is
intended for the modal operations.

Remaining program code

I altered these constants (they are returned in the first
element of the main() result list). Now they conform
the keywords required in the type argument of the
Operator.report() method, used to display messages

Chapter 4 Converting API Script into Blender Add-On 89

Copyright Witold Jaworski, 2011-2019.

Note that the invoke() method also receives another argument: event. This object contains information about

the user interface “event” — mouse movement or keyboard key state change. It allows creating advanced oper-

ators (see examples in the Operator class documentation). In this code I will never use the event object.

Writing this script, I assumed that our operator will be invoked in the Object Mode. In fact, we are going to ap-

pend it to the mesh Object menu, which is only available in this mode. Yet you never know whether someone in

the future will add your operator to another menu or panel, and in which Blender mode it will be invoked. There-

fore, it is a good idea to implement in your operator class a function named poll() (Figure 4.2.2):

#--- ### Operator

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object'''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 @classmethod

 def poll(cls, context):

 return (context.mode == 'OBJECT')

 def execute(self, context):

 main('DIFFERENCE', cntx = context)

 return {'FINISHED'}

Figure 4.2.2 The basic „availability test” — implementation of the poll() function

Blender invokes this function to find out if this command is available "in the current situation". You can examine

in your poll() implementation the context object passed as one of its arguments. Function poll() returns True,

when the operator is available for the given context. Otherwise, it returns False.

This is the place for „general” tests, such as the one in the illustration above. This poll() function returns True

when Blender is in the Object Mode. (This is the meaning of the ‘OBJECT’ keyword). If it is in other mode — the

armature editing, for example — field context.mode would return a different value.

I will not check there for more detailed conditions, for example - the types of the selected objects. They are too

specific. It would be a very strange command, available only when you have selected two or more mesh ob-

jects! Half of the users would have no luck to see it in this state, and they would conclude that this add-on does

not work. It is better to make the Boolean command available in the Object menu all the time. If the user invokes

it without any objects selected, it will display an appropriate message. In this way she/he will learn “by example”

how to use this command next time.

• Do not use in the poll() function any method that changes the Blender state (for example the current mode,

or the scene data). Any attempt to invoke such an operation here will cause a script runtime error.

Note the @classmethod expression before the header of the poll() function. (In the programmer’s jargon, this is

called “decorator”). It declares that this is a class method — to run it, you do not need an object instance1.

• Always add the @classmethod “decorator” before the header of the poll() method! If you omit it, Blender

will never call this function.

1 Probably it improves the performance of Blender environment. The poll() methods are implemented by all GUI controls, and they are

called every time Blender refreshes its screen. (The poll() functions of all visible controls are called when the user does anything — pulls

down a menu, clicks a button, etc.). If poll() was an instance method, like execute(), Blender would have to create instances of GUI control

objects just to call their poll() methods, and then discard them immediately. I suppose that it would significantly slow down Blender fps rate.

For calling a class method you do not need to create its instance (an object), therefore this operation requires less CPU time.

Function returns True when we are in the
Object Mode. Thus, the Boolean command will
be only available in this mode,

You must declare poll() as the class method
(instead of the typical instance method)

Blender uses the poll() function to check, if this
operator is available for the current context. When
it returns False — its control is grayed out

https://docs.blender.org/api/master/bpy.types.Operator.html?highlight=event

90 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

All right, our enhanced operator is ready to use. Yet how to add it to the standard Blender Object pull-down

menu (Figure 4.2.3)?

Figure 4.2.3 Object menu

The standard Blender menu are created in the same way as our add-on: using API functions and classes. To

add an item to menu Object, you must find the name of its API class. In such a case, the Python Tooltip is an

invaluable tool. Just hover your mouse for a while over the menu label (Figure 4.2.4):

Figure 4.2.4 Identification of the Object menu class name

When I know the menu class name, I can write the code that will add our operator to this menu (Figure 4.2.5):

from bpy.utils import register_class, unregister_class

def menu_draw(self, context):

 self.layout.operator_context = 'INVOKE_REGION_WIN'

 self.layout.operator(OBJECT_OT_Boolean.bl_idname)

def register():

 register_class(OBJECT_OT_Boolean)

 bpy.types.VIEW3D_MT_object.prepend(menu_draw)

def unregister():

 bpy.types.VIEW3D_MT_object.remove(menu_draw)

 unregister_class(OBJECT_OT_Boolean)

Figure 4.2.5 Appending the operator command to the Object menu

Every pull-down menu class in Blender is based on class bpy.types.Menu. In procedure register() I am calling

the prepend() method of the Object menu class (VIEW3D_MT_object). It adds the custom drawing method

menu_draw() at the beginning of this menu. In procedure unregister() I am reverting this step.

What does the menu_draw() function contain? Its argument self is the Object menu class. Field self.layout

returns a bpy.types.UILayout object. It represents the menu “surface” (others also call it “canvas”). The

operator() method places a new command in this layout. This command is identified by its id (field bl_name).

However, before this step I alter the layout operator_context field, setting it to ‘INVOKE_REGION_WIN’. This

tells Blender to call the invoke() method of the operator, so the user will see eventual error/warning messages.

I am going to add the
Boolean command to
this section

This is the name of the Python class
that implements the Object menu

This line tells Blender to use
the invoke() method instead of
the default execute()

Adds and removes
Boolean operator
from the menu

Auxiliary function: it is defined in the main script code, but then added to the class
that implements Object menu (that’s why its first argument is named self)

Chapter 4 Converting API Script into Blender Add-On 91

Copyright Witold Jaworski, 2011-2019.

If I used method Menu.append() in the register() procedure – the new item would appear at the end of the

Object menu. In Blender API you cannot place a new item in the middle of menu.

• To identify the class name of a popup menu (like Context Menu, opened by RMB click), you have to find its

class in the source Blender file. The whole Blender GUI is written in Python, and you can find its scripts in

subfolder scripts\startup\bl_ui. (On my computer this is C:\Program Files\Blender\2.80\scripts\startup\bl_ui).

Files named space_<window type>.py contain menu API classes for the corresponding Blender window.

Thus, you can find the menus of the View 3D pane in file space_view3d.py. Open this file in a text editor

and try to find the name of a specific command from the menu you are searching for. (Sometimes you will

find nothing, if the menu uses the default name of this operator. In this case try searching for another item).

Let’s check if this code works: reload the script (using the Run Script button). It executes the updated register()

method, and in the result you can see our command at the top of the Object menu (Figure 4.2.6):

Figure 4.2.6 Our command in the Object menu

Let’s do another test: invoke the Boolean command from this menu when no object is selected. Figure 4.2.7

shows the message displayed by the report() method, called by our operator (as intended).

Figure 4.2.7 The result of invoking the Boolean command without any selected object

Simultaneously, Blender displays a red line with this message in the Info window. (But who, among the ordinary

users, looks there?). The warnings are displayed in the Info window in orange.

Our command

The result of the report()
method (see Figure 4.2.1)

92 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

So far, our command performed the Boolean difference operation, because it was “hardwired” in its code. Let’s

add a parameter to this operator, providing the user a choice among the three options (Figure 4.2.8):

from bpy.props import EnumProperty

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object

 Arguments:

 @op (Enum): operation type, in ['DIFFERENCE', 'UNION', 'INTERSECT']

 '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 op : EnumProperty(items = [

 ('DIFFERENCE',"Difference","Boolean difference"),

 ('UNION',"Union","Boolean union"),

 ('INTERSECT',"Intersection","Boolean intersection"),

],

 name = "Operation",

 description = "Boolean operation",

 default='DIFFERENCE',

) #end EnumProperty

 @classmethod

 def poll(cls, context):

 return (context.mode == 'OBJECT')

 def execute(self, context):

 main(self.op, cntx = context)

 return {'FINISHED'}

 def invoke(self, context, event):

 result = main(self.op, cntx = context)

 if result[0] == SUCCESS:

 return {'FINISHED'}

 else:

 self.report(type = {result[0]}, message = result[1])

 return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.2.8 Declaration of an operator property (operator parameter)

Operator argument, also referred as “property”, is declared as an ordinary class field, assigned by the colon (“:”)

to one of the API *Property functions. You can find these functions – BoolProperty(), FloatProperty(),

IntProperty(), StringProperty(), … – in the bpy.props module. (In this module you can find a *Property func-

tion for each of the basic API data types). The op parameter is an enumeration of the three available Boolean

operations, thus I used here the EnumProperty function.

The most important part of this new code is the definition of the op enumeration. It is passed to the

EnumProperty() function in its arguments (Figure 4.2.8). In the first argument – items – I am passing the list

that declares enumeration items. Each element of this list is a tuple, containing: the value (e.g. ‘DIFFERENCE’),

name (displayed in the GUI), and description (for the tooltips). From the other optional arguments of

EnumProperty(), I am also using default: it determines the default value of the op operator parameter.

• The tuples of the items list can also contain two additional (optional) values: the icon name (a string) and

the option id (a number). I will show them in one of the further sections.

In the further code, in particular in the object methods, you can use the op field as any other field of this class.

In Figure 4.2.8 I am using it in the invoke() and execute() methods, passing its value as the first argument of

the main() function.

The bpy.props module contains the API functions for all
argument types. For this case I am using an Enumeration

Enumeration
elements

Value Name Description

New property (argument) of this operator:
an enumeration, named op

Always place
colon (“:”) here!

Here we use the current
value of the op argument

Setting the default value

Chapter 4 Converting API Script into Blender Add-On 93

Copyright Witold Jaworski, 2011-2019.

Load this new version of the code by clicking the Run Script button, forcing the re-registration of this add-on.

Then, when you type the operator name in Python Console, you can see its parameter (Figure 4.2.9)

Figure 4.2.9 New argument of the object.boolean operator

You can invoke it from this console, for example typing bpy.ops.object.boolean(op=’UNION’).

What’s more, you can use such an enumeration for an easy conversion of a single menu command (operator

item) into a submenu. Each item in this submenu will invoke the same operator with different parameter value.

Just change the single line in menu_draw(), as in Figure 4.2.10:

def menu_draw(self, context):

 self.layout.operator_context = 'INVOKE_REGION_WIN'

 self.layout.operator_menu_enum(OBJECT_OT_Boolean.bl_idname, property="op")

Figure 4.2.10 Adding a submenu for operator options

Replace the layout.operator() method with layout.operator_menu_enum(), and pass the name of the

enumeration parameter (“op”) in the property argument. Then reload this script. Now, in place of a single

Object→Boolean command you will see a submenu with all three Boolean operations (Figure 4.2.11):

Figure 4.2.11 The Object→Boolean submenu

When you check the items in this menu using Python tooltips, you will see that each of them invokes the

Boolean operator with different value of the op parameter.

After this modification, our add-on became a useful tool. In the next section I will introduce an enhancement: the

possibility of a dynamic interaction with the user.

An argument: op(eration)

This method creates a submenu for the items of this enumeration

Each of these commands
invokes the Boolean operator
with different op parameter

94 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Summary

• Apart the basic execute() method, your operator class should implement another function: invoke() (page

88). Keep the execute() method “mute” and implement the user communication in invoke(). Use the

Operator.report() method for displaying the user warning or error messages;

• To add your operator to a Blender menu, you must know the API class of this menu. Use Python tooltips to

identify this name (page 90). It is more difficult for the popup menus (like the Context Menu). You have to

search for their names in the Blender source files. They are named space_<window name>.py and located

in the <Blender version>\scripts\startup\bl_ui directory (page 91)1;

• To add an operator to Blender menu, define a menu_draw() procedure that “draws” it on the menu “sur-

face” (layout). Then pass this procedure to the Menu.perpend() or .append() methods (page 90);

• When the user clicks your operator label from a menu, Blender by default calls the execute() method of

your operator class. Usually you will want it to use the invoke() method instead, because it can display

eventual messages. To do it, in the menu_draw() method set the layout operator_context field to

‘INVOKE_REGION_WIN’ keyword before drawing your operator (page 90);

• You can implement in your operator the optional poll() method. Blender uses this function to check, wheth-

er in the current context the command is still available (for example — active in the menu). It is intended for

the first, general tests, like the checking the current mode (page 89);

• You can create operator parameter (property) as a class field, using appropriate function from the

bpy.props module (page 92). Operator properties, created in this way, become automatically named ar-

guments of the operator method (from the bpy.ops namespace — see page 93). Then you can use these

fields in your code as any other object field that contains a string/boolean/numeric value;

• You can easily create a submenu from an operator enumeration property (initialized using the

EnumProperty() function - page 93);

1 For example – in the scripts\startup\bl_ui\space_view3d.py file you can find that:

• API class of the Object Context Menu is named VIEW3D_MT_object_context_menu;

• API class of the Vertex/Edge/Face Context Menu is named VIEW3D_MT_edit_mesh_context_menu;

Chapter 4 Converting API Script into Blender Add-On 95

Copyright Witold Jaworski, 2011-2019.

4.3 Dynamic interaction with the user

In Blender, it is very simple to implement a dynamic interaction between your operator and the user— at least a

certain, basic scheme of such a cooperation. It allows the user to change continuously the operator parameters

(using mouse, for example), while Blender is updating the result on the screen.

All what you have to do is to override the default operator options (field Operator.bl_options). Assign it a set

containing two values: {‘REGISTER’, ‘UNDO’} (Figure 4.3.1):

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object

 Arguments:

 @op (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']

 '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 bl_options = {'REGISTER', 'UNDO'}

Figure 4.3.1 Overriding the operator options

If you omit any element from this the bl_options set: 'REGISTER', or 'UNDO', you will not obtain the effect,

which is shown in Figure 4.3.2:

Figure 4.3.2 Dynamic change of the operator options

This is the tool options panel for your operator – as in the standard Blender commands.

Add this line (it overrides the default options)

When you select from this list
another option – it immediately
changes the result on the screen

When you invoke Boolean command,
Blender will show its options in the tool
panel. It appears (initially minimized) in the
lower left corner of the 3D View

96 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

When you invoke our command (let’s say: Object→Boolean→Difference), it creates the hole in the plate, as in

the previous trials. However, note that in the lower left corner of the active window Blender has added a bar with

our operator name (Boolean). When you click this bar, you will find the tool option panel. This panel contains the

controls corresponding to all operator parameters (properties). In the case of our script this is just the Boolean

operation type. When you alter the value of any control from the tool options panel, Blender immediately

updates the operator result you can see on the screen. (Of course, if your operator does not perform any time-

consuming calculations). For an operator property that represents a float number (for example: a distance), you

can drag the mouse cursor (holding the LMB down) over corresponding control, dynamically changing the result

in 3D View. Unfortunately, our operator has no such float property (i.e. parameter).

How does Blender get this effect from our srcript? For tracking down such interactive events, printing of a

diagnostic text in the console is better than the debugger window. Place temporary print() statements in both

operator methods: invoke() and execute() (Figure 4.3.3):

 def execute(self, context):

 print("in execute() : op = '%s'" % self.op)

 main(self.op, cntx = context)

 return {'FINISHED'}

 def invoke(self, context, event):

 print("in invoke() : op = '%s'" % self.op)

 result = main(self.op, cntx = context)

 if result[0] == SUCCESS:

 return {'FINISHED'}

 else:

 self.report(type = {result[0]}, message = result[1])

 return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.3.3 Adding the diagnostic messages (just for the test)

Reload this new add-on version and invoke the Object→Boolean→Difference command again (Figure 4.3.4):

Figure 4.3.4 Diagnostic messages, displayed when I was altering the tool options

Immediately after this invocation, the first line will appear in the console (Figure 4.3.4). It seems that Blender

has called the invoke() method. Now let’s change the value of Operation field in the Boolean pane. After each

change, we can see that Blender calls the execute() method, using the currently selected op parameter.

It seems that every time I change the value of the tool panel control, Blender calls Undo command, and then

simply invokes the operator again. For this purpose it uses directly its execute() method, calling it with the op

parameter set to the current value of the Operation control.

I think that the roles of the invoke() and execute() procedures in Blender API can be summarized as follows:

• The invoke() method is called when the operator is executed with the default parameters. The execute()

metod is called when operator is executed for specific parameter values. (In the latter case they are

explicitly passed in the argument list of this call).

The choice of the operator methods called by the GUI can be controlled by certain flags (see page 90).

Diagnostic messages (they
will appear in the console)

1. Invoking the menu command

2. Tool panel: changing the operation to Union

3. Tool panel: changing the operation to Intersection

4. Tool panel: changing the operation to Difference

Chapter 4 Converting API Script into Blender Add-On 97

Copyright Witold Jaworski, 2011-2019.

By default, the tool options pane contains every declared API property of your operator. For example I will add to

our class another field (API property) named modifier. This is a simple True/False flag. If it is set to True, the

operator does not apply the new Boolean modifier, added to the modifier stack (Figure 4.3.5):

from bpy.props import EnumProperty, BoolProperty

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object

 Arguments:

 @op (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']

 @modifier (Bool): add this operation as the object modifier

 '''

 modifier : BoolProperty(name = "Keep as modifier",

 description = "Keep the results as the object modifier",

 default = False

) #end BoolProperty

 @classmethod

 def poll(cls, context):

 return (context.mode == 'OBJECT')

 def execute(self, context):

 main(self.op, apply_objects = not self.modifier, cntx = context)

 return {'FINISHED'}

 def invoke(self, context, event):

 result = main(self.op, apply_objects = not self.modifier, cntx = context)

 if result[0] == SUCCESS:

 return {'FINISHED'}

 else:

 self.report(type = {result[0]}, message = result[1])

 return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

Figure 4.3.5 Another property of the operator: (a simple Yes/No flag)

Figure 4.3.6 shows this new control in the tool options panel:

Figure 4.3.6 Modified tool options panel

By default, Blender displays the tool option controls in a single column (one under another) in the same order as

they are declared in the operator class. Usually it produces an acceptable visual effect. In the example above,

the Keep as modifier option seems to be shifted rght because it is placed after the pull-down list, which is left-

aligned (as all of the text fields)1.

1 If you wish to “take control” over the tool options panel layout of your operator – override the Operator.draw() method. In this procedure

you can implement your own layout of the controls.

Remaining code

This is a simple Yes/No flag,
so I initialized it using function
BoolProperty()

This control represents
the modifier property

Sometimes the Python “path”
to an API field is too long

98 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

If you would like, you can also hide a property from the tool options panel. For this purpose pass to the options

set of the property initalizaton function (*Property()) keyword ‘HIDDEN’ (Figure 4.3.7):

 modifier : BoolProperty(name = "Keep as modifier",

 description = "Keep the results as the object modifier",

 default = False,

 options = {'HIDDEN'},

) #end BoolProperty

Figure 4.3.7 Marking an argument as invisible in the tool options pane

Blender uses settings applied in the last completed operator call as the default values for the next call. Of

course, this rule does not apply to the properties which are set explicitly, as the op argument in the

Object→Boolean submenu. Blender “remembers” these last used values for the timespan of the current

session. When you quit Blender and open it anew, for the first call to your operator it will use the default values

as defined in your code. To force Blender using this declared default value in every operator call, add another

keyword: ‘SKIP_SAVE’ to the options set in the property initialization function.

Summary

• To make your command interactive, just add to its operator class following line: bl_options =

{‘REGISTER’,’UNDO’}. When you invoke it after this change, you will see in the 3D View the tool options

panel containing the command properties (arguments), presented as the GUI controls. You can alter these

properties using the keyboard or the mouse. The results of these changes are dynamically updated on the

screen (page 96);

• When you click the command button or the menu item, Blender calls the invoke() method of the corre-

sponding operator. When you alter any property of this command in the tool options panel, Blender calls

Undo, then the execute() method of this operator (page 96);

• The options parameter of the operator property initialization function (*Property()) contains some useful

keywords. To hide a property from the tool options panel, add the ‘HIDDEN’ keyword to this set. To ex-

clude property from applying the last used value as the new default, add the ‘SKIP_SAVE’ keyword to its

options set;

‘HIDDEN’ removes this property
from the tool options pane

Chapter 4 Converting API Script into Blender Add-On 99

Copyright Witold Jaworski, 2011-2019.

4.4 Keyboard shortcut and a pie menu

When the add-on is tested and it works properly, you can think about further facilities, like the keyboard shortcut

for your operator. Of course, first you have to determine the key combination for this shortcut.

Blender is known for its dozens (if not hundreds) keyboard shortcuts. Now I must find among them an unused

combination for our command. Frankly speaking, I prefer the rule “the less keys, the better”. Holding down sim-

ultaneously three or four keyboard keys (Alt , Ctrl , a letter key, and eventually Shift) is more difficult than typing

a single letter key. For the shortcuts, I prefer the keys from the left side of the keyboard, because most of the

users keeps the mouse in their right hand, leaving the left hand free for most of the time. From the other side – if

I was going to assign to my operator a keyboard shortcut “hardcoded” in the script, it had to be a unique (thus:

complex) key combination. In this way I can avoid potential conflicts with other plugins and Blender standard

shortcuts. Most of the add-on authors do it this way. However, I will choose a different approach:

• I will allow the user to determine the keyboard shortcut for the Boolean command. For this purpose, I will

implement a special add-on preferences panel (in the next section of this guide). Such a facility allows me

to propose a simple key combination for the default shortcut.

To determine a suitable, unused key combination I prepared the test environment: in the 3D View window,

Object Mode, I selected a few scene objects. Then I started typing single letter keys on the left side of the key-

board: Q , W , E , R , A , S , D , F , Z , X , C , … checking, what happens. On this occasion I learned about a

few Blender facilities that were unknown for me, like the Quick Favorities menu (under the Q key), or switching

the active tool variants (W):

Figure 4.4.1 Searching for an unused kay for the keyboard shortcut

Surprisingly, I have found that the E , D , and F keys are not (yet) assigned to any command. After this prelimi-

nary elimination, I have to check this short list of free keys in the Blender preferences window.

Key Q : opens a

user configurable
Quick Favorities
menu

Key W : switches the between

the active tool variants

I am typing subsequent keys: Q , W , E , R , A ,

S , D , F , Z , X , C and checking, what they do

100 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In the preferences window (Edit→Preferences), Keymap tab, I searched for all the shortcuts that use each of

the keys that I selected in the previous step (Figure 4.4.2 shows the results for key D):

Figure 4.4.2 Checking the existing shortcuts that use a given key

I paid special attention to the number and type of the Blender modes that use these shortcuts. Ultimately, I de-

cided to use the D key as the default keyboard shortcut for this operator. It is used just in two modal projection

changes: View 3D Fly Modal and View 3D Walk Modal, thus there will be no conflict. (Shortcuts E and F are

used more often, although in completely different windows and/or modes. However, because of this more fre-

quent use, they could cause more mistakes among the users).

I prepared two auxiliary procedures that register and remove the keyboard shortcut (Figure 4.4.3)

addon_keymaps = []

def register_keymap():

 key_config = bpy.context.window_manager.keyconfigs.addon

 opeartor_id = OBJECT_OT_Boolean.bl_idname

 if key_config:

 key_map = key_config.keymaps.new(name = "Object Mode")

 kotkey = key_map.keymap_items.new(operator_id, 'D', 'PRESS')

 addon_keymaps.append((key_map,kotkey))

def unregister_keymap():

 key_config = bpy.context.window_manager.keyconfigs.addon

 if key_config:

 for key_map, hotkey in addon_keymaps:

 key_map.keymap_items.remove(hotkey)

 addon_keymaps.clear()

Figure 4.4.3 Keyboard shortcut registration

These are simple methods without any parameters, because at this moment the shortcut is “hardcoded”. The

register_keymap() method assigns the shortcut key (‘D’) to the Boolean operator and saves the newly created

keymap and hotkey in the auxiliary addon_keymaps list. Method unregister_keymap() removes the shortcut

assigned to this operator and clears the addon_keymaps list.

Search in the shortcut keys…

…every combination that contains D

A global auxiliary list that preserves the registered
shortcuts (while this add-on is active)

Auxiliary variables (for a
more readable code)

addon is a special
keyboard configuration
for the plugins

I am checking this just in case Use here the name from
Preferences:Keymap

Shortcut definition

Add the shortcut to Blender keymap

Remove the shortcut from Blender keymap

Clear the auxiliary shortcut list

Chapter 4 Converting API Script into Blender Add-On 101

Copyright Witold Jaworski, 2011-2019.

I placed calls to register_keymap() / unregister_keymap() procedures in the register() / unregister() methods

(Figure 4.4.4):

def register():

 register_class(OBJECT_OT_Boolean)

 bpy.types.VIEW3D_MT_object.prepend(menu_draw)

 register_keymap()

def unregister():

 unregister_keymap()

 bpy.types.VIEW3D_MT_object.remove(menu_draw)

 unregister_class(OBJECT_OT_Boolean)

Figure 4.4.4 Calling the keyboard shortcut registration methods

(Note that unregister() executes the corresponding steps in the reverse order than they are invoked in the

register() method. In this way I am avoiding using an API class that is not yet registered, or just removed).

When you click the Run Script button, this shortcut will appear in Blender Keymap list (Figure 4.4.5):

Figure 4.4.5 Shortcut to the Boolean command

Thus, when in 3D View you select objects Cylinder and Cube, and then type D , you will make a hole:

Figure 4.4.6 Invoking the Boolean operator using keyboard shortcut

This command was invoked with the default op parameter, so Blender uses here the last used value of this

property. You can switch it later in the tool options panel (Figure 4.4.6).

Procedures that register/unregister

keyboard shortcut

Type the command name…

Switch to the
searching by name

When you type D ,

Cylinder cuts this hole

After this, you can switch the
Boolean operation type in the tool
options panel

…so now you can see it here!

102 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

I think that the users would prefer selecting the type of the Boolean operation immediately after pressing the

shortcut key. It could be a classic popup menu offering the three available options. However, in Blender we can

use for the same purpose a more elegant pie menu (as shown in page 37, Figure 3.1.8).

The API class for a pie menu differs just in few details from the implementation of a classic popup/pull down

menu (Figure 4.4.7):

class VIEW3D_MT_Boolean(bpy.types.Menu):

 '''This pie menu shows Boolean operator options.

 Invoked by the hotkey assigned to this add-on

 '''

 bl_idname = "VIEW3D_MT_Boolean"

 bl_label = "Select operation:"

 def draw(self, context):

 pie = self.layout.menu_pie()

 pie.operator_enum(OBJECT_OT_Boolean.bl_idname, property="op")

Figure 4.4.7 Implementation of a pie menu that exposes the Boolean operator options

I named this class VIEW3D_MT_Boolean. From the programmer point of view, the only difference in implemen-

tations of a classic menu and a pie menu is in their draw() methods. In this class I begin the draw() method by

calling layout.menu_pie(). It prepares (initially empty) pie menu. Then I allow Blender to generate items for this

menu from the op enumeration property of the Boolean operator.

This new menu will be opened by our keyboard shortcut (instead of the Boolean operator). Thus, I modified the

register_keympa() procedure. In place of the Boolean operator id I placed the name of the special

wm.call_menu_pie operator. It opens the pie menu, which name I assign to its name property (Figure 4.4.8):

def register_keymap():

 key_config = bpy.context.window_manager.keyconfigs.addon

 if key_config:

 key_map = key_config.keymaps.new(name = "Object Mode")

 hotkey = key_map.keymap_items.new('wm.call_menu_pie', 'D', 'PRESS')

 hotkey.properties.name = VIEW3D_MT_Boolean.bl_idname

 addon_keymaps.append((key_map,hotkey))

#---------- # general

def register():

 register_class(OBJECT_OT_Boolean)

 register_class(VIEW3D_MT_Boolean)

 bpy.types.VIEW3D_MT_object.prepend(menu_draw)

 register_keymap()

def unregister():

 unregister_keymap()

 bpy.types.VIEW3D_MT_object.remove(menu_draw)

 unregister_class(VIEW3D_MT_Boolean)

 unregister_class(OBJECT_OT_Boolean)

Figure 4.4.8 Registration of a pie menu

I also added to register() and unregister() methods additional lines that handle registration of the pie menu API

class (VIEW3D_MT_Boolean).

Base class: Menu (used for both:
pie menus and classic menus)

Blender 2.8 prefers menu names with “_MT_” in the
middle (To be “on the safe side”, use the class name)

This prompt is displayed in the center of the pie menu

This method automatically generates pie menu items from the
elements of an operator enumeration property

Displays pie menu

The pie menu name is
assigned in a separate line

This command opens
a pie menu

Registering (and unregistering)
of the pie menu class

unregister_keymap() – no changes

Chapter 4 Converting API Script into Blender Add-On 103

Copyright Witold Jaworski, 2011-2019.

To check, how it works now, reload this script (clicking the Run Script button). Then go to the 3D View window

and press the D key (Figure 4.4.9):

Figure 4.4.9 Pie menu (first version)

It looks quite good, but let’s improve its appearance, adding icons to these labels. The simplest way is to choose

corresponding icons from the standard Blender set. Click the Icon Viewer button in the Python Console window

to open its browser (Figure 4.4.10):

Figure 4.4.10 Blender icon browser

Unfortunately, the Boolean modifier options are not “iconized” (yet?). After long deliberations I decided to use

the icons intended for the operations on a selection set. I read their identifiers from the field at the upper right

corner of the icon browser window: ‘SELECT_EXTEND’ (Union), ‘SELECT_SUBSTRACT’ (Difference),

‘SELECT_INTERSECT’ (Intersection). I do not think that they are especially pretty, but at least they match the

idea of these three Boolean operations.

When you press D , you will see this pie menu

containing all three Boolean operations:

Icon ID:

Icons that I selected

104 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The most convenient way to add these icons to our implementation is to extend the definitions of the op enu-

meration in the OBJECT_OT_Boolean class (Figure 4.4.11):

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object

 Arguments:

 @op (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']

 @modifier (Bool): add this operation as the object modifier

 '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 bl_options = {'REGISTER', 'UNDO'}

 op : EnumProperty(items = [

 ('DIFFERENCE',"Difference","Boolean difference", 'SELECT_SUBTRACT',1),

 ('UNION',"Union","Boolean union", 'SELECT_EXTEND',2),

 ('INTERSECT',"Intersection","Boolean intersection", 'SELECT_INTERSECT',3),

],

 name = "Operation",

 description = "Boolean operation",

 default='DIFFERENCE',

) #end EnumProperty

Figure 4.4.11 Adding icons to the tuples in the op enumeration

Note that in every tuple of this enumeration the icon id is accompanied by an ordinal number. They are required

by the API – if I added only the icon id, Blender would raise an exception in the register() method.

Let’s reload this script again (Run Script) and type the D key (Figure 4.4.12):

Figure 4.4.12 Results of the “iconized” op enumeration

The icons appeared everywhere – not only in the pie menu, but also in tool option panel and pull-down menu.

In each tuple in this enumeration I added two new values:
icon id (string) and ordinal number (integer)

You can see these icons
in every place where the
op property is used

Does this “picturesque” style
conform the Blender conventions
for the pull-down menu?

Chapter 4 Converting API Script into Blender Add-On 105

Copyright Witold Jaworski, 2011-2019.

Looking at the modified Boolean submenu, I started to wonder if such an “iconic” style conforms the Blender

conventions for pull-down menus? (I could not see any other icons in the neighbor Transform, Set Origin, Mirror,

and other submenus of the Object menu). However, I made a more detailed review of this and other Blender

pull-down menus and concluded that although most of the Object submenu items have no icons, there are some

exceptions. For example – in the Object→Convert To submenu. You can also find more icons in the other pull-

down menus of the 3D View.

Summary

• The complex keyboard shortcuts of three or four keyboard keys are inconvenient. Try to use shorter combi-

nations of two, or even a single key;

• To assign a keyboard shortcut to your operator, you have to find it first. Start by creating a “short list” of the

most promising, unused key combinations. You can do it by typing all the possible keys in a test Blender

environment (page 99). (This environment should closely resemble the real environment where the users

will apply your operator). Then determine (using the Blender keymaps – as on page 100) the least used

shortcut and use it in your add-on;

• Assign the shortcut to your operator in a new so-called “key map”, in the keyboard configuration named

bpy.context.window_manager.keyconfigs.addon (page 100). Do it in the register() procedure and save

these objects in a global variable. You will need them in the unregister() procedure (page 101);

• When your operator has several variants, as Boolean in this example, it is a good idea to assign the key-

board shortcut to a pie menu, which in turn invoke the operation selected by the user (page 102, 103);

• You can use the standard Blender icons in your user interface (page 103, 104);

106 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

4.5 Implementation of the add-on preferences panel

In principle, our object_booleans.py add-on is ready. In this section I will just add a small utility: add-on prefer-

ence panel that will allow the user to change the shortcut key assigned to the Boolean operator.

To test the preference panel, I need to install this add-on. I did it in the Blender Preferences window

(Edit→Preferences), clicking the Install… button (Figure 4.5.2):

Figure 4.5.2 Add-on installation

In the file selection window, I opened the Eclipse project folder

and in the src subdirectory I selected the object_booleans.py

file. During this “installation”, Blender copies this file into its add-

on folder for the user add-ons. (You can read the full path to this

copy from the File field, displayed in the add-on panel).

In my Eclipse project I created an “archive” folder for unused

files named prev and moved there the original script file. Then in

the src folder I added a link to the add-on file that I installed in

Blender. (I did this using File→New command, as described on

page 146). Now this installed Blender add-on file is simultane-

ously the current script in this Eclipse project.

Figure 4.5.1 Shortcut to Blender add-on file

1. Click
this button

2. Go to the subdirectory of your Eclipse project and
select the add-on script

3. Click this button
to install this add-on

When you make this Preferences window wider, you
will be able to read the full path to the installed file

Original file

Shortcut to the
installed Blender
add-on

Chapter 4 Converting API Script into Blender Add-On 107

Copyright Witold Jaworski, 2011-2019.

You cannot use the Run.py script for debugging an installed Blender add-on, as we did in the previous sections

of this guide. That’s why I added a few new lines of code at the beginning of the object_booleans.py file. They

will connect it to the PyDev remote debugger (Figure 4.5.3):

import bpy

import traceback #for error handling

DEBUG = 1

###--- for direct debugging of this add-on (update the pydevd path!) ------------

if DEBUG == 1:

 import sys

 pydev_path =

 'C:/Users/me/.p2/pool/plugins/org.python.pydev.core_7.2.1.201904261721/pysrc'

 if sys.path.count(pydev_path) < 1: sys.path.append(pydev_path)

 import pydevd

 pydevd.settrace(stdoutToServer=True, stderrToServer=True, suspend=False)

###-- end remote debug initialization --

Figure 4.5.3 Initialization of the PyDev debugger client in the installed add-on script

• Remember that an active (i.e. enabled) add-on is being loaded and registered during Blender initialization.

That’s why you have to run the remote PyDev debugger in Eclipse before you open the test *.blend file.

After these preparations I added to this plugin an API class that implements the preferences panel. It extends

the AddonPreferences base class (Figure 4.5.4):

#---------- # Add-On Preferences -----------

class Preferences(bpy.types.AddonPreferences):

 '''This class provides the user pssibility of altering the keyboard shortcut

 assigned to the Boolean pie menu

 '''

 bl_idname = __name__

 shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",

 default=False)

 ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",

 default=False)

 alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",

 default=False)

 key : EnumProperty(items = [('NONE',"None","No hotkey")] +

 [tuple([chr(i),chr(i),"[%s] key" % chr(i)]) for i in range(65, 91)],

 name = "Keyboard key",

 description = "Selected keyboard key",

 default = 'D',

)

 def draw(self, context):

 layout = self.layout

 layout.prop(self,"key")

 layout.prop(self,"shift")

 layout.prop(self,"ctrl")

 layout.prop(self,"alt")

Figure 4.5.4 First version of the plugin preferences panel

This is a simple class containing declarations of several properties (panel controls) and the draw() method,

which displays them on the screen. At this moment these controls are placed in a column (like menu items).

Auxiliary constant: set to 0 in the final version (or 2, when it is loaded using the Run.py script)

This is the PYDEV_PATH from
Run.py (see page 53)

to import this module, I am adding the full
path to */pysrc directory to PYTHONPATH Invoke PyDev remote

debugger client

It must inherit from this base class

For this id always use the name of this script file

The simplest function that places
the class properties on the panel

Properties (panel controls) These functions initialize the panel controls

This expression generates for every letter from
'A'… 'Z' range the three-element tuples:
(‘A’, ‘A’, “[A] key”) (‘B’, ‘B’, “[B] key”), …
and so on.

108 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Instead a list of static items, I placed an expression in the key enumeration property. It generates the item defi-

nition tuples for the 26 ‘A’…’Z’ letters (ASCII codes from 65 to 91). I did it just because I did not want to type all

these 26 tuples. Note also that I placed the add-on file name (without the “.py” extension) as the bl_idname

value. (I used the Python global __name__ variable for this purpose).

This new API class needs to be registered. This is the third class that we have to handle in this way. To minimize

the chance for stupid mistakes (as registering the class in the register() method and forgetting unregister it in

unregister()), I introduced an auxiliary, global list of the API classes handled by this module (Figure 4.5.5):

#list of the classes in this add-on to be registered in Blender API:

classes = [

 OBJECT_OT_Boolean,

 VIEW3D_MT_Boolean,

 Preferences,

]

def register():

 for cls in classes:

 register_class(cls)

 bpy.types.VIEW3D_MT_object.prepend(menu_draw)

 register_keymap()

 if DEBUG: print(__name__ + ": registered")

def unregister():

 unregister_keymap()

 bpy.types.VIEW3D_MT_object.remove(menu_draw)

 for cls in classes:

 unregister_class(cls)

 if DEBUG: print(__name__ + ": UNregistered")

Figure 4.5.5 Modified registration procedures

Instead of single calls to the register_class() method, now I call this method in a loop for all the items from list

classes. Additionally, at the end of the register/unregister procedures I placed auxiliary diagnostic messages.

(They are still useful, accompanying the debugger data). To turn them off, set the DEBUG variable to 0.

When you enable our add-on – Blender will load this code and display its preferences panel (Figure 4.5.6):

Figure 4.5.6 Initial look of the preferences panel

This global list classes contains the API
classes for registering/unregistering

Now I handle API registering/
unregistering in a loop

Diagnostic messages

Enable this add-on, to see its
preferences panel

This layout is unreadable
– I have to fix it

Chapter 4 Converting API Script into Blender Add-On 109

Copyright Witold Jaworski, 2011-2019.

The preferences panel displayed properly, but its layout is unreadable (it is difficult to recognize that it describes

a keyboard shortcut). Figure 4.5.7 shows the fixed draw() function:

 def draw(self, context):

 row = self.layout.row(align=True)

 row.alignment = 'LEFT'

 row.separator(factor = 10)

 row.prop(self,"key", text="Keyboard shortcut")

 row.separator(factor = 3)

 row.label(text="with:")

 row.prop(self,"shift")

 row.prop(self,"ctrl")

 row.prop(self,"alt")

Figure 4.5.7 Fixed draw() function

Of course, I gradually transformed the code from Figure 4.5.4 to the state depicted above, testing after each

step the updated preferences panel in the Blender Preferences window. (After every modification I saved this

add-on file and turned the add-on off and on). You can see the ultimate result in Figure 4.5.8:

Figure 4.5.8 Fixed preferences panel

The first value on the key dropdown list – None – turns off this keyboard shortcut (and in the effect – the pie

menu of the Boolean command). I added this item just in case, if the user decides that she/he does not need

any shortcut for this command.

Now make another test: select from this list a different key – let’s say E – and close Blender leaving this add-on

enabled (active). Blender 2.8 automatically saves all the add-ons preferences, so this setting also is saved.

Then open Blender again. Note that the state of this plugin is restored in this new Blender session: the Boolean

operations add-on is enabled, and the E key is already set in its preferences panel.

However, if you disable this add-on and quit Blender, then open Blender again and enable the add-on, it will

display the default D shortcut.

• The add-on preferences are saved between Blender sessions as long as this plugin is enabled. Blender

removes add-on settings when it is disabled by the user (in the Blender Preferences: Add-ons).

Set the controls horizontally (in a row)

Align them to the left

A spacer in between

Another spacer (thinner than the first one)

Additional label

Different label for the dropdown menu

This dropdown menu
was created from the
key enumeration

spacer

spacer Additional label

110 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

OK, we have checked that the add-on settings are preserved between Blender sessions. However, at this mo-

ment these add-on preferences are not connected to the rest of the plugin code. In particular, the shortcut keys

selected in the preferences panel do not open the Boolean pie menu. It’s time to implement this connection.

When I write a program, I always try to follow the “single place” rule: every operation (as keyboard shortcut reg-

istration or setting the default values) should take place in a single place of my code. It can be implemented as a

function or procedure, or a constants declaration. In all other places, where I need it, I am using this function,

procedure or constants. (In this way I minimize the potential risk of the errors caused by changing the code in

one place while forgetting to make corresponding update in the other, where I implemented similar operation).

That’s why for the shortcut keys in this script I decided to set their default values in a global dictionary named

hotkey defaults (if I could do it in Python, I would mark it as constant). I am going to use these values in the

call to function keymap_items.new() in the register_keymap() method (see Figure 4.4.3, page 100). In the

code below I am re-using hotkey_defaults items as the default values of the API properties (Figure 4.5.9):

#---------- # Add-On Preferences -----------

#default values for the keymap_items.new() call (see register_keymap() method)

hotkey_defaults = {"idname": 'wm.call_menu_pie', "type": 'D', "value": 'PRESS',

 "shift": False, "ctrl": False, "alt":False}

class Preferences(bpy.types.AddonPreferences):

 '''This class provides the user pssibility of altering the keyboard shortcut

 assigned to the Boolean pie menu

 '''

 bl_idname = __name__ #do not change this line

 shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",

 default=hotkey_defaults["shift"])

 ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",

 default=hotkey_defaults["ctrl"])

 alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",

 default=hotkey_defaults["alt"])

 key : EnumProperty(items = [('NONE',"None","No hotkey")] +

 [tuple([chr(i),chr(i),"[%s] key" % chr(i)]) for i in range(65, 91)],

 name = "Keyboard key",

 description = "Selected keyboard key",

 default = hotkey_defaults["type"],

)

 Figure 4.5.9 Declaration of the default keyboard shortcut

Note that the keys in the hotkey_defaults dictionary must match the argument names of the

keymap_items.new() function. (I could skip all its optional arguments). I placed the declaration of this dictionary

above the Preferences class declaration, because the API functions that initialize the properties of this class use

hotkey_defaults dictionary entries as their default values.

• Blender executes functions BoolProperty() and EnumProperty() in the code above when it loads (acti-

vates) the add-on, before calling the register() function. That’s why you can use in their arguments only the

values that are already declared in the previous lines of this script.

the draw() method – without changes

This dictionary contains default values for the arguments of the keymap_items.new() function (used in
register_keymap()). The keys of this dictionary are the names of these *.new() function arguments.

I use the corresponding hotkey_defaults
items as the default values of the API
properties.

Chapter 4 Converting API Script into Blender Add-On 111

Copyright Witold Jaworski, 2011-2019.

Then I modified the register_keymap() procedure (Figure 4.5.10):

def register_keymap():

 '''Registers current hotkey'''

 #assumption: at this moment the addon_keymaps[] list is empty

 args = hotkey_defaults

 if Preferences.bl_idname in bpy.context.preferences.addons:

 #update args, according preferences:

 prf = bpy.context.preferences.addons[Preferences.bl_idname].preferences

 args["type"] = prf.key #use the user-defined key and its modifiers:

 args["shift"], args["ctrl"], args["alt"] = prf.shift, prf.ctrl, prf.alt

 else:

 prf = None

 if args["type"]== 'NONE' : return

 key_config = bpy.context.window_manager.keyconfigs.addon

 if key_config:

 key_map = key_config.keymaps.new(name = "Object Mode")

 hotkey = key_map.keymap_items.new(**args)

 hotkey.properties.name = VIEW3D_MT_Boolean.bl_idname

 addon_keymaps.append((key_map,hotkey))

 if DEBUG: print("Keyboard shortcut set to: "

 + ("[Shift]-" if args["shift"] else "")

 + ("[Ctrl]-" if args["ctrl"] else "")

 + ("[Alt]-" if args["alt"] else "")

 + ("[%s]" % args["type"])

 + (" (from add-on preferences)" if prf else ""))

Figure 4.5.10 Using the add-on preferences in the keyboard shortcut registration

When you compare this code with the previous version of keymap_register() from Figure 4.4.8 (page 102), you

can see that it is much more extended. Additional lines at the beginning prepare the arguments for the

keymap_items.new() function (dictionary args). Initially this is a copy of the hotkey_defaults dictionary. Then I

update it with the values from the current addon settings. For this purpose, I use a local variable prf that repre-

sents the data from the preferences panel. I override the corresponding args entries with the prf properties. If

the users selected the ‘NONE’ value as the key (see Figure 4.5.8), I quit this procedure at this point (no shortcut

will be registered). Otherwise keymap_register() registers the new shortcut, as it did before.

At the end of this method I placed an auxiliary diagnostic message. (Set the DEBUG constant to 0, to turn it off).

To check if this updated code works, enable this add-on and select key E in its preferences panel, then close

Blender and open it again. Observe the diagnostic messages in the console (Figure 4.5.11):

Figure 4.5.11 Effects of the updated register_keymap() method

Auxiliary diagnostic
message

args contains arguments for the keymap_items.new(). Initially it copies the defaults

The .addons will not contain this script name when it is run
from the Run.py code. (I added this condition just in case)

prf: contains current settings

The args dictionary is modified according the current add-on settings

I am setting this value just for the diagnostic message (below)

If the user does not want a shortcut: quit this procedure

Use the updated args in this
function as the argument list

Add-on activation

Add-on displays this message while loading

Setting the shortcut key in the pref-

erences panel to E , closing and

re-opening Blender

112 Creating the Blender Add-On

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The script reads its new preferences when Blender was loading, and assigns the pie menu keyboard shortcut to

key E . However, the user will interpret such an “late” application of the setting changed in the previous session

as an error. An she/he will be right. In Blender environment all updates you are making in the panel controls are

applied immediately (there are no “OK” buttons in Blender GUI). To immediately apply the changes in the

Preferences panel I added to the Preferences class a special method on_update(). Then I passed this proce-

dure to the functions that initialize this class properties (in their optional update arguments). Now Blender will

call on_update() when the user changes (via panel controls) these API properties (Figure 4.5.12):

class Preferences(bpy.types.AddonPreferences):

 '''This class provides the user pssibility of altering the keyboard shortcut

 assigned to the Boolean pie menu

 '''

 bl_idname = __name__ #do not change this line

 def on_update(self, context):

 unregister_keymap()

 register_keymap()

 shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",

 default=hotkey_defaults["shift"], update = on_update)

 ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",

 default=hotkey_defaults["ctrl"], update = on_update)

 alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",

 default=hotkey_defaults["alt"], update = on_update)

 key : EnumProperty(items = [('NONE',"None","No hotkey")] +

 [tuple([chr(i),chr(i),"[%s] key" % chr(i)]) for i in range(65, 91)],

 name = "Keyboard key",

 description = "Selected keyboard key",

 default = hotkey_defaults["type"],

 update = on_update

)

Figure 4.5.12 Handling update notifications from the API class properties

To update the Blender key map, on_update() removes eventual previous shortcut (in unregister_keymp()),

then it registers the new one (in register_keymap()). As you can see in Figure 4.5.10, register_keymap() ap-

plies the current Preferences settings, which means the current (updated) property value. Function on_update()

must be defined in the script lines that precede the property initialization functions (i.e. before the corresponding

calls to BoolProperty(), Enum Property() functions – just like the hotkey_defaults dictionary).

When you reload this add-on, every change in its properties panel will be immediately passed to the current

Blender keymap (Figure 4.5.13):

Figure 4.5.13 Immediate changes of the pie menu shortcut key

the draw() method – without changes

Auxiliary function, invoked when the
property value has been updated

When I select F from this list, this new

shortcut immediately replaces the pre-
vious one in the Blender keymap.

Chapter 4 Converting API Script into Blender Add-On 113

Copyright Witold Jaworski, 2011-2019.

You still have to publish a description of this add-on in the wiki.blender.org, and to open a bug tracker for the

eventual error notifications1. However, these additional activities are not the subject of this book. The full code of

the script, we have written here, you will find on page 162.

When you finish this add-on, remember to switch its DEBUG constant to 0 (see Figure 4.5.3, page 107). Other-

wise it will call the PyDev Debugger client, which will cause a runtime error when the user activates this script

on another computer. Leaving these lines active even on your own computer can disturb eventual tests of an-

other add-on (if this Boolean operations add-on is also enabled).

Summary

• To test the implementation of the add-on preferences panel, you have to install your plugin in Blender (in

the Blender Preferences window – see page 106);

• You can still edit and debug such an installed script file. Just add to your PyDev project its link (page 106),

and call the PyDev Debugger client at the beginning of its code (page 107);

• To implement a preferences panel, define a new API class that extends the bpy.types.AddonPreferences

base. Set the identifier (bl_idname) of this class to your script name. To display the preferences panel,

override its draw() method (page 107);

• As the other API classes, register your add-on preferences class in the register() method, and unregister it

in the unregister() method (page 108);

• You can load the current add-on settings (as displayed in its preferences panel) from a collection exposed

by the current context object: bpy.context.preferences.addons. Use the name of your script (without the

.py extension) as the key of this dictionary (page 111);

• To immediately update Blender settings when the user has changed one of the add-on preference pane

controls, implement a call-back function and assign it to the update notifications of the API properties (as in

page 112);

1 In the result of such user feedback, I added further modifications to the script published in the previous edition of this book. Such updates

are natural part of the add-on lifecycle.

114 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Appendices

I have added to this book various optional materials. They can come in handy when you are not sure of some-

thing while reading the main text.

Chapter 5 Installation Details 115

Copyright Witold Jaworski, 2011-2019.

Chapter 5. Installation Details

In this chapter, you will find details of the Python, Eclipse and PyDev installation procedures. Study them just in

the case you have stuck somewhere in the shorter descriptions that I placed in the main text.

116 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

5.1 Details of Python installation

Since 2019 Eclipse is only available in the 64-bit variant. Thus, to ensure that there will be no conflict with the

Python interpreter, I suggest installing the 64-bit variant of the current Python version.

Open the Python project page: www.python.org, select there the Downloads menu, and then – the Python vari-

ant prepared for your OS (Figure 5.1.1):

Figure 5.1.1 Main page of the Python project

The default button (labeled “Python 3.7.3” in the figure above), downloads the 32-bit Python variant, thus I had

to ignore it. Instead, I clicked the OS name (Windows), to get the full list of the variants for this system.

From the next page I downloaded the 64-bit Python variant for Windows (Figure 5.1.2):

Figure 5.1.2 The download page, with various Python versions

To get the 64-bit installer, open
your OS tab (Windows, in my case)

The default (32-bit) Python installer

Select the Python version which is closest
to the version used internally by Blender

The installer of the 64-bit Python variant

http://www.python.org/

Chapter 5 Installation Details 117

Copyright Witold Jaworski, 2011-2019.

Select the same Python version, which is used in your Blender. (If you cannot find the identical version — select

the one that has the closest version number). Clicking the link to download of the Python setup program. In the

case as in Figure 5.1.2 the name of this file is: python-3.7.3-amd64.exe. Do not worry about the “amd” prefix

before the “64” (bit). Despite this name, you can also run it on the PCs equipped with the Intel processors.

When you run the downloaded setup program, you can alter the Python settings or simply install it using the

default options (Figure 5.1.3):

Figure 5.1.3 The first screen of the setup program

I do not like the unnecessary additions, thus I decided to alter (restrict) the scope of this installation to the mini-

mal set. I clicked the Customize installation button, which opens the screen as in Figure 5.1.4:

Figure 5.1.4 Python setup options (form 1/2)

I do not like the default Python editor, thus I switched off the td/tk and IDLE option. I am going to use Eclipse for

the more difficult/advanced projects. For a quick look into the contents of any Python file I am going to use the

popular Notepad++ or similar program that displays the code in the syntax-dependent colors.

I also disabled the py launcher, which allows to run the *.py files as the executable programs (by double clicking

the file icon, like the files with the *.exe or *.bat extensions). I am going to use Python scripts only in the plugins,

so I do not want to run them by an accident outside this environment.

Default installation: in the
user profile (does not require
the Administrator rights)

Here you can alter the
default settings

I am going to edit Python scripts in
Eclipse, thus I do not need the
default editor

I also disabled the automatic invok-
ing the Python interpreter by dou-
ble-clicking a *.py file

118 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

On the next screen I decided to make this Python instance available to all users of this computer (Figure 5.1.5):

Figure 5.1.5 Python setup options (form 2/2)

On this screen I selected the Install for all users option because:

• I installed the previous Python interpreters in this way (a few years ago it was the default option);

• The setup will place the Python folder in the general \Program Files directory, instead of the folder in the

user profile. (It is more difficult to find a program in the user profile. From time to time I have to find

something among these source files);

• I have the Administrator rights, required for this option.

I also disabled the option that allows me to debug the binary files of the Python standard modules (I am never

going to do that).

The Python installation starts when you click the Install button:

Figure 5.1.6 Python installation

The whole process takes about a minute.

 I am choosing this option
only because on my PC I
installed the other Python
instances in the same way,

I am not going to
debug the standard
modules

Chapter 5 Installation Details 119

Copyright Witold Jaworski, 2011-2019.

Finally, the setup displays its last screen (Figure 5.1.7):

Figure 5.1.7 The final screen of the Python installation

Click Close to complete this process.

120 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

5.2 Details of Java Runtime Environment (JRE) installation

Eclipse is a Java application, and since 2019 it requires the 64-bit variant of the Java Runtime Environment

(JRE). You can download the JRE setup program from www.java.com. On this portal you will also find the tips

about identification the JREs that you already have on your computer (Figure 5.2.1):

Figure 5.2.1 Main page of the java.com site (as in May 2019)

The default JRE is 32-bit. If you find that you do not have the 64-bit JRE – click the Java Download button:

Figure 5.2.2 Auto-detecting the JRE variant for your computer

The java.com portal detects your OS variant using the information provided by your web browser. If it proposes

the 32-bit Java – click the See all Java downloads link at the bottom of this screen.

2. If you do not have the
64-bit JRE – click here.

1. Check here if the
JRE is present on
your computer.

This recommendation is based on the
information from your web browser

If this is the proper variant –
just click this button

If the recommended variant is
32-bit – click here to select the
64-bit variant manually

https://www.java.com/
https://www.java.com/

Chapter 5 Installation Details 121

Copyright Witold Jaworski, 2011-2019.

It opens the page with all JRE variants. Select the 64-bit JRE from there (Figure 5.2.3):

Figure 5.2.3 Manual selection of the JRE variant

Download and run the setup program. During the JRE installation you do not have to alter any options.

• Eclipse IDE requires the 64-bit JRE. It often happens that even on the 64-bit computers various applica-

tions install the 32-bit JRE. Thus, usually you will find that you have Java on your computer, but in the 32-

bit variant, which cannot handle Eclipse executables. Fortunately, you can have 32-bit JRE and 64-bit JRE

installed “side by side”, on the same PC.

• If you are using Mac OS, check the current Eclipse installation notes. In the moment when I am writing this

book (May 2019), they advise to install the 64-bit variant of the complete JDK (Java Development Kit).

(JDK contains the JRE). Otherwise Eclipse will display error messages.

For 64-bit Windows,

select this variant

https://wiki.eclipse.org/Eclipse/Installation

122 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

5.3 Details of Eclipse and PyDev installations

• First, check if you have 64-bit Java Runtime Environment (Java JRE) installed on your computer. In Win-

dows you can check it clicking the “Java” icon in the Control Panel. If it is not there — download the latest

Java version in the 64-bit variant from the java.com site and install it on your machine1.

Let’s start by downloading the setup program. Go to the http://www.eclipse.org/downloads page (Figure 5.3.1):

Figure 5.3.1 Selection of the Eclipse package

Click the Download 64 bit button: it opens the server selection page (Figure 5.3.2):

Figure 5.3.2 Select the server for download

1 Some Linux distributions, like popular Ubuntu, have GCJ as their default Java virtual machine (VM). In this environment, Eclipse runs

much slower than on the JVM from the www.java.com. What ’s more, even after the JVM installation on Ubuntu, it is not set as the default

VM! You have to correct it manually. More about this — see https://help.ubuntu.com/community/EclipseIDE.

Download the setup program
of the latest Eclipse version

The names of the previous Eclipse versions were inspired
by the astronomy or physics: „Helios”, „Photon”, „Neon”, …
However, a year ago the Eclipse Foundation changed its
mind, and the new versions are named after the year and
month of the release date.

Click this button or allow
the page to select the

best server for you

http://java.com/pl/download
http://www.eclipse.org/downloads
http://www.java.com/
https://help.ubuntu.com/community/EclipseIDE

Chapter 5 Installation Details 123

Copyright Witold Jaworski, 2011-2019.

When you run the setup program, you will see the window where you can select one of the Eclipse packages

(Figure 5.3.3):

Figure 5.3.3 Selection of one of the Eclipse variants (packages)

In fact, Eclipse is a kind of open IDE framework, which can be adapted by appropriate plugins for any program-

ming language. On the Eclipse Internet site, you can find some ready-to-use plugin packages for the most popu-

lar languages. There is no "Eclipse for Python" bundle among them, so we will make it ourselves. Just download

any of these packages. For example, you can choose the “nearly empty” Eclipse for Testers (you can find it

lower on the list displayed in Figure 5.3.3). Personally, I selected Eclipse IDE for JavaScript, because it con-

tains some additional tools that I am going to use for other purposes (not connected with Blender).

When you click the selected package, in the next window you can alter the default folder for the program files:

Figure 5.3.4 Eclipse installation options

I am leaving it in the default folder here, so that most probably it will match your installation.

Click to select one
of the packages

By default, Eclipse is installed
in the user profile

Start the
installation

124 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

• By default, Eclipse creates its folder in the current user directory. I decided to continue using these settings,

because in the course of this book we will have to identify a certain folder among the Eclipse plugins. If I in-

stalled this IDE in a non-standard folder, some of the Readers would get lost at that point.

When you click the INSTALL button, you will have to do some “legal paperwork”, accepting various agreements:

Figure 5.3.5 License agreements and certificates, accepted during Eclipse installation

Finally, you will get to the last screen of the setup program:

Figure 5.3.6 The final screen of the setup program

Start
Eclipse IDE

Chapter 5 Installation Details 125

Copyright Witold Jaworski, 2011-2019.

When you launch Eclipse, it always displays a dialog box where you can select the location of its projects direc-

tory (it is called “workspace”). You may just confirm this default (Figure 5.3.7):

Figure 5.3.7 Selecting the current workspace

Each of Eclipse projects is a separate folder that contains your Python script(s) and a few configuration files. (If

your script is located elsewhere on the disk, you can put just its shortcut in the project directory). Notice that the

default Eclipse workspace folder is in the root directory of the user profile. (In this example, the username is

me). This is not My Documents folder, but its parent. (It is the Unix/Linux convention of the home directory). If

you want to keep all your data in My Documents — change accordingly the path displayed in this window.

Eclipse will create this directory, if it does not exist.

• Eclipse is always proposing to open the most recently used project from the last workspace.

On the first launch, Eclipse opens the “Welcome” window (Figure 5.3.8)

Figure 5.3.8 Eclipse window on the first launch

Disable on this screen the Always show Welcome option, and then click the item named Launch the Eclipse

Marketplace. It starts the Python IDE installation (an Eclipse plugin, named PyDev).

User’s home directory. (Note that this is
not the My Documents folder!)

If you are not going
to work on more than
one project in the
same time, you may
check this option

Click here to add the Python
IDE (PyDev) to this package

Here you can turn off this
“Welcome” window

126 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

• You can also find the same command under the Eclipse Marketplace… label in the Help menu.

It opens the form that lists all the Eclipse plugins (Figure 5.3.9):

Figure 5.3.9 Plugin selection window

In the Find field type “PyDev” and run the search. In response Eclipse will find the plugin as in Figure 5.3.9.

Click its Install button. It displays another window where you have to confirm the plugin components (Figure

5.3.10):

Figure 5.3.10 Confirmation of the PyDev components

I changed nothing here, just clicked the Confirm button.

1. Search for a
plugin named
“PyDev”

2. When you find it
– click here

Confirm the selected set

Chapter 5 Installation Details 127

Copyright Witold Jaworski, 2011-2019.

In response Eclipse opens another window, with the license agreements (Figure 5.3.11):

Figure 5.3.11 Confirmation of license agreements

Accept these agreements (by selecting I accept ... option) and click the Finish button. It starts the PyDev instal-

lation. During this process Eclipse downloads various components from the Internet, so make sure that you

have a live connection to the web.

The progress is displayed in the Eclipse status bar (Figure 5.3.12):

 Figure 5.3.12 Installation progress indicator

Select I accept…
and continue

Eclipse displays installation
progress in the status bar

128 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

When the PyDev installation is completed, Eclipse proposes a restart (Figure 5.3.13):

Figure 5.3.13 The final window of the plugin installation

Confirm this proposal, clicking the Restart Now button.

• You can safely install different Eclipse versions “side by side”, on the same PC. (This hint can be useful in

the future, when you decide to install a version of the Eclipse IDE).

Chapter 5 Installation Details 129

Copyright Witold Jaworski, 2011-2019.

5.4 Details of the PyDev configuration

Once installed, you have to configure the in PyDev the default Python interpreter. This information is stored in

the current Eclipse workspace (ref. page 13, Figure 1.2.5). To set it, use the Window→Preferences command

(Figure 5.4.1):

Figure 5.4.1 Opening the current workspace configuration

In the Preferences window expand the PyDev section, and in the Interpreter subsection highlight the Python

Interpreter item (Figure 5.4.2):

Figure 5.4.2 Automatic configuration of the Python interpreter

Now you have to select the external Python interpreter that will be used by the PyDev. To do it, click the Choose

from list button. It starts with searching the Python instances installed on your computer.

Select this
item….

… and click
this button

130 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

If the program finds more than one Python interpreter – it shows their list (Figure 5.4.3):

Figure 5.4.3 Selecting the 64-bit Python version from the list of the interpreters installed on the local computer

Select from this list the interpreter you just have installed (i.e. the 64-bit variant of the version that matches the

Python version in your Blender – see section 1.1, page 8).

It may happen that PyDev is not able to find the proper Python interpreter. In such a case, in the Preferences

window click the Browse for python/pypy.exe button (see Figure 5.4.2). It will open the window of „manual” Py-

thon selection (Figure 5.4.4):

Figure 5.4.4 “Manual” selection of the Python interpreter

Type here (or select using the Browse… button) the full path to the python.exe file of the 64-bit Python instance.

(Do not select the pythonw.exe by mistake!) In this window you can also determine the name of this interpreter

in the PyDev environment. (This is just an aesthetic issue).

Select the proper
Python version

Type here the name, under
which it will appear in the PyDev

Enter here full path
to the python.exe

Chapter 5 Installation Details 131

Copyright Witold Jaworski, 2011-2019.

When you choose the Python instance, PyDev will display Python directories in a new window. They will be

added to the PYTHONPATH configuration variable (Figure 5.4.5). Just accept it without any changes:

Figure 5.4.5 Selection of the directories that will be added to the PYTHONPATH system variable

In the result, the configured Python interpreter appears in the Preferences window (Figure 5.4.6):

Figure 5.4.6 Configured Python interpreter

Configured Python
interpreter

Click here to save
this definition

I altered this name (for the clarity)

132 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

When you accept these settings by clicking the Apply and Close button, PyDev will browse all the Python files

that are present in the PYTHONPATH directories. It will prepare the autocompletion data and the other internal

stuff Figure 5.4.7):

Figure 5.4.7 Processing the PYTHONPATH files

Now the PyDev is ready for editing the Python scripts.

• The PyDev settings described in this section are stored in the Eclipse workspace. This means that if you

need it, you can prepare several workspaces, each with different PyDev settings (for example – different

Python interpreter). It can be useful for testing the add-ons with older Blender versions.

• To run/debug the classic (standalone) Python scripts in PyDev, you have to assign the Python interpreter to

your current project. See pages 26 and 134 for details.

Chapter 5 Installation Details 133

Copyright Witold Jaworski, 2011-2019.

5.5 Managing Eclipse project perspectives

You will use two project perspectives (alternative screen layouts) while working on a Python script in Eclipse:

Debug and PyDev. Their switches are placed on the toolbar but are small and hardly visible among the other

icons and controls (Figure 5.5.1):

Figure 5.5.1 Project perspective buttons on the toolbar

Fortunately, you can easily enlarge them by enabling their text labels. In this mode they are more visible, which

allows for quicker perspective switching (Figure 5.5.2):

Figure 5.5.2 Enlarging the perspective switches

Now these enlarged items also allow for a quick identification of the current perspective.

If we have already started altering this toolbar, let’s make another modification: removing from these switches

the button of the JavaScript perspective. (We do not need it in our Python project) (Figure 5.5.3):

Figure 5.5.3 Removing from the toolbar the switch of an unused perspective

Switches of the project perspectives
are small and hardly visible

2. Enable this option (adds the icon label)

1. Click RMB on the switch,

to open its context menu

With the labels, these switches
are larger and more readable

1. Click RMB into the switch

you want to hide

2. Click Close To bring it back,
use this button

The perspective
has disappeared

134 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

5.6 Configuring the running and debugging commands for standalone Python scripts

In each new PyDev project you can define how to call the Python interpreter for running / debugging the main

script in your project. These settings are grouped in a so-called Run Configuration. To set them, you need the

main source file (main Python module) in your project – even if this file is completely empty at this moment.

• Run Configuration settings are not used for running and debugging Blender API scripts, because for this

purpose we will use the PyDev remote debugger. Run configurations are required for the classic Python

modules, which are processed by the standalone Python interpreter. In this book we are using them briefly

in Chapter 2, where I am showing how to run/debug the simplest code from a classic Python file.

Let’s start with creating a run configuration. From the Run menu select Run Configurations… command:

Figure 5.6.1 Opening the run configurations window

It opens the Run Configurations dialog. In the list on the left side of this window highlight the Python Run item

and from its context menu select the New Configuration command (Figure 5.6.2):

Figure 5.6.2 Creating a new Run Configuration

Chapter 5 Installation Details 135

Copyright Witold Jaworski, 2011-2019.

In response, Eclipse displays on the right side of this window an empty form for a new run configuration. Start

by assigning it to the current project (select your project into the empty Project field – as in Figure 5.6.3):

Figure 5.6.3 Assigning the project

Select the Main Module of this project (i.e. your script file):

Figure 5.6.4 Assigning the main module

The file you have selected as the Main Module can be empty at this moment. Just add there the main procedure

of your script before invoking the Run command.

This is the form of
this run configuration

Select your project
into this field

Eclipse displays here
the PyDev, project,
and Python paths

Select your Python
script into this field

136 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

You can also alter the Name of this configuration for a more descriptive one. Then switch to the Common tab

and select this configuration as the default one for running and debugging (Figure 5.6.5):

Figure 5.6.5 Marking this configuration as the default one

Save this configuration with the Close button (Figure 5.6.6):

Figure 5.6.6 Saving the run configuration

Descriptive name

In the Common tab mark this
configuration as the one preferred
for both: running and debugging

No error
messages

Click Close to save
changes

Chapter 5 Installation Details 137

Copyright Witold Jaworski, 2011-2019.

Thanks to the settings you have made in the Common tab, this run configuration is displayed as the first item in

both: Debug and Run menus (Figure 5.6.7):

Figure 5.6.7 New command in the Debug and Run menus

138 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Chapter 6. Others

In this chapter, you will find all the detailed materials that I am referencing in the main text of this book. Thus,

this is an eclectic set of sections, describing details of various issues. You can find here solutions of eventual

problems, which you may encounter while coupling Eclipse/PyDev IDE with Blender.

Chapter 6 Others 139

Copyright Witold Jaworski, 2011-2019.

6.1 Updating Blender API predefinition files

In the zip package that accompanies this book there is doc folder (see page 39). In its python_api\pypredef di-

rectory I placed headers (“predefinition files” - *.pypredef) of the Blender API (Figure 6.1.1):

Figure 6.1.1 Contents of the doc\python_api\pypredef folder

You should add this folder to the External Libraries list in your PyDev project configuration (see page 40). PyDev

will use this content for code autocompletion and for displaying descriptions of Blender API functions.

In each new Blender version, there are new API functions and classes. That’s why in the doc folder you can also

find a shortcut named refresh_python_api.bat, which updates the *.pypredef files (Figure 6.1.2):

Figure 6.1.2 Contents of the doc folder

Use this shortcut when you install a new Blender version. The refresh_python_api.bat runs in Blender (in batch

mode) the script named pypredef_gen.py, from doc\python_api directory (Figure 6.1.3):

Figure 6.1.3 Contents of the doc\python_api folder

Theoretically, pypredef_gen.py should also run properly in other operating systems, like Linux. I have not tried it.

This script is a modified version of the sphinx_doc_gen.py, developed by Campbell Barton for automatic gen-

eration of the Blender API documentation. (The same, which was published on the blender.org pages for Blend-

er 2.5). Thanks to this code, in all the functions, classes and their methods in the PyDev predefinition files you

can find the same descriptions as in the official API documentation.

PyDev header files (and subfolders)
for Blender API

Use this shortcut for updating the *.pypredef
files (to match your current Blender version)

This script generates the *.pypredef files
for your current Blender version

http://www.blender.org/documentation/250PythonDoc/contents.html

140 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

When you run the doc\refresh_python_api.bat batch file, first you will see many “RNA warnings” in the system

console. After them, the script displays information about eventual updates of the target files (Figure 6.1.4):

Figure 6.1.4 Updating the Blender API predefinition files

This last fragment is the most important: look at the lines that begin with “updating: …”. They list the *.pypredef

files that have been updated. The second-last line (“Writing userprefs:…”) comes from the Blender (it prints it

while quitting), while the “Press any key to continue…” phrase comes from the standard pause command,

placed at the end of the batch file.

However, if a runtime error has occurred, the result of the batch file in system console looks like in Figure 6.1.5:

Figure 6.1.5 Script error message

If the error message (you can find it below the traceback printout, as in the figure above) says about missing

permission or a problem with creating/writing to a file, then you need more (OS) privileges to doc\ folder.

• In Windows the Blender directory (C:\Program Files) is treated in a specific way. By default, no Windows

program can create/write files in its subdirectories. Thus, if you placed the doc\ folder in the C:\Program

Files\Blender directory (as I am showing on page 39), you have to alter the user privileges. Grant the writ-

ing rights to this directory to the built-in Users group.

These warnings will always appear
– just ignore them

This message comes from Blender (on
closing, it writes it to the system console)

List of the updated
header files

This means an unexpected error in the script

If this message is related to a problem with writing/
creating file or folder (like this one), then this you need
the write/create rights to this folder

Chapter 6 Others 141

Copyright Witold Jaworski, 2011-2019.

If you have no Administrator privileges to your computer – you can put doc\ folder on another directory, where

you have the right to write/create files.

• You can unpack the doc folder to any suitable place in your computer, for example – into your Documents.

In such a case just remember to make a minor update in the refresh_python_api.bat file. Replace there the

relative path (“\..”) to blender.exe with the full path, for example:

 "C:\Program Files\Blender\blender.exe" -b -P python_api/pypredef_gen.py

At the end of this section – a few notes:

1. The bgl module header contains just the constants symbols and function names (there are no function

parameters). This is because Blender developers did not not document in API (there are no __doc__

fields, nor the “RNA” information, as in the other modules). On the other hand, Blender 2.8 documenta-

tion suggest switching from this “old fashioned” OpenGL 1.1 bgl interface to the modern one, available

in the gpu module. (The gpu module methods are also much faster);

2. BMesh operators (defined in the bmesh.ops) are not documented. They do not provide the “RNA” in-

formation, as in the case of the bpy module. Their __doc__ fields contain just the function declarations,

without any description;

3. At the end of the main API header – bpy.pypredef file – you can find many simplified class declarations

for all the Blender panels and menus. They are useful in the case, when you want to add your com-

mand/submenu to any of these GUI elements. Otherwise PyDev editor would mark such a class name

as an error. While such an error does not prevent your Python code from successful running and de-

bugging, it is better to stick to the “no errors signalized by the PyDev editor” rule. In this way you can

avoid many time-consuming issues. All the standard menus are derived from bpy.types.Menu class

and have “_MT_” symbol in the middle of their names. All the standard panels are derived from

bpy.types.Panel class and have “_PT_” in their names. They also have prefixes, written in capitals,

which denote the windows (spaces) where they are used. For example, a class named

bpy.types.VIEW3D_MT_object represents the Object menu from the 3D View window.

4. Nearly all fields of the bpy.context (bpy.types.Context class) are copied into the bpy.pypredef file from

the fixed text that I put into the pypredef_gen.py script. This is a specific object: its field set changes,

depending on the window (Blender screen area) from which the Python script is invoked. Some fields

are available only in the 3D View, other in the Properties window. I placed in the header file all the pos-

sible fields and noted in the comments their eventual window dependencies (Figure 6.1.6):

Figure 6.1.6 Opening the PyDev - PYTHONPATH pane

• After every update of the pypredef files, update also PyDev internal info, as described on page 143

When there is no note in the asterisks
(“*…*”) in the comment, this means that the
field is available in all screen contexts.

This field is available only for the scripts
that runs in the Properties window context.
(This window in the Blender developers’
slang is called Buttons window)

When you hover the mouse over a class
field – PyDev displays its declaration

142 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

6.2 Enabling Blender API code autocompletion in a PyDev project

When you start in the PyDev a new Blender add-on project, add to the PYTHONPATH variable the path to the

doc\python_api\pypredef\ directory. This folder contains declarations of Blender API methods, classes and con-

stants (see page 139).

To do it, open Project→Properties (Figure 6.2.1):

Figure 6.2.1 Opening project properties

In the properties dialog, highlight the PyDev – PYTHONPATH section, then select its External Libraries tab

(Figure 6.2.2):

Figure 6.2.2 Opening the PYTHONPATH form

1. Highlight
the project

2. Open its
properties

2. Select

this tab

1. Highlight
this item

Chapter 6 Others 143

Copyright Witold Jaworski, 2011-2019.

Initially there are no external libraries (the list in this tab is empty). Click the Add source folder button to add a

directory to this list, and in the dialog box select the doc\python_api\pypredef folder (Figure 6.2.3):

Figure 6.2.3 Declaring the pypredef folder as the Python “external library”

When the Blender API headers folder has appeared on the external libraries list, click the Force restore

internal info button. According its description, you should do this after every change made to the header files:

Figure 6.2.4 Refreshing internal PyDev information and closing this dialog

Finally, click the Apply button to save these changes.

Initially there are no
external libraries

1. Click this button to add the
Blender API headers directory

2. Select the doc\python_api\pypredef
folder (see. pages 39 and 139)

Click this

button

Then - confirm
changes

144 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Once the project configuration is updated, add to your script appropriate import statement. Usually you start by

importing the bpy module. Then, when you type a dot after a class variable name, PyDev will display the list of

the class fields and methods (Figure 6.2.3):

Figure 6.2.5 Blender API code autocompletion – on placing a dot after the class variable (or Ctrl - Space)

You can also use the Ctrl - Space shortcut.

To learn more about PyDev autocompletion – see page 41.

Import appropriate
module, first!

Then as usual – PyDev proposes
methods and fields when you type
dot after a class variable

Chapter 6 Others 145

Copyright Witold Jaworski, 2011-2019.

6.3 Importing/linking an existing file to a PyDev project

You can copy (import) to your PyDev project an existing file from your disk. Just “grab” it with mouse (for exam-

ple – in the File Explorer window), then drag and drop into your Eclipse project (Figure 6.3.1):

Figure 6.3.1 Importing an existing file to the project folder

It creates a copy of this file in the selected folder of the Eclipse project (Figure 6.3.2):

Figure 6.3.2 A test Blender file, attached to a PyDev project

Drag this file with mouse and
drop it into the project folder

A copy of the original file –
double click to open in Blender:

146 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

In addition to attaching files, you can also link to the Eclipse project any file located in a different directory on

your disk. However, in PyDev projects you have to do it in a less straightforward method than the “drag and

drop”1. Highlight the target folder in your project and in the context menu click New→File (Figure 6.3.3):

Figure 6.3.3 Invoking the File→New command

Enable the Advanced option in the New File creator dialog, and mark Link to file … option (Figure 6.3.4):

Figure 6.3.4 Selection of the source type

1 From unknown reasons PyDev ignores the default Eclipse settings (from Window→Preferences:Workspace\Linked Resources). According

these settings after receiving a dropped file, PyDev should ask whether to import (copy) or link this file.

Click RMB on the target folder, and

invoke the New→File command

Expand Advanced
section

Click here to select
the file to be linked

Mark this option

Chapter 6 Others 147

Copyright Witold Jaworski, 2011-2019.

In the file selection dialog box select the source file (Figure 6.3.5):

Figure 6.3.5 Selecting the source file for linking

When you click Open, you come back to the creator dialog (Figure 6.3.6):

Figure 6.3.6 Filled New File creator form

Select the source
file and click Open

PyDev has placed here the
path to your source file

Now you can click Finish
to complete this operation

148 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Click the Finish button in the creator window. In the result, PyDev will create a shortcut (link) to the original file.

In this way you can easily connect to your project an existing Blender add-on, even when it is already installed

in the Blender add-on directory (Figure 6.3.7):

Figure 6.3.7 File link, added to a PyDev project

As you can see in figure above, file links icons in Eclipse are marked with additional arrow at their right, lower

corner. When you open properties of this link, you can read the full path to the source file. You can also alter this

path there (Figure 6.3.8):

Figure 6.3.8 PyDev Properties window of a linked file (opened by clicking RMB)

This is not a file, but a link to the source file,
located in a completely unrelated folder

Source file location

Click here, if you
want to redirect this
link to another file

Chapter 6 Others 149

Copyright Witold Jaworski, 2011-2019.

6.4 Details of debugging Blender scripts

Blender uses its own, embedded interpreter for executing Python scripts. You can debug them using the built-in,

standard Python debugger. Unfortunately, this tool works in the "conversational" mode, in the console. Thus, this

is not a user-friendly solution.

You need so-called remote debugger, to follow the script execution in an IDE such as Eclipse. This solution was

originally invented for debugging programs that are running on another computer (Figure 6.4.1):

Figure 6.4.1 Tracing the Blender script execution in the PyDev remote debugger

In the IDE (like Eclipse) you have to run the server process. It starts "listening" to eventual requests from the

debugged scripts. These requests will be sent by a remote debugger client, activated in the code of the tracked

script. The communication between the remote debugger client and its server is realized through the network.

Long ago, someone noticed that you can also run these two processes on the same machine. They exchange

data using the local network card of the computer. Conceptually, this corresponds to a situation, where two per-

sons are sitting in the same room and talking to each other via a phone. Fortunately, the programs are "stupid"

and do not complain that they have to communicate in such a strange way. From the user point of view, this

solution works without flaws. Just beware the firewalls. In the PyDev, the debugger client code is in the pydevd

Python package. In the Run.py script template I use the pydev_debug.py auxiliary module (see page 160),

which imports and initializes PyDev debugger client. (Run.py is the “testbed” of our scripts — see page 53).

Apart the button shown in previous figure, you can also start the remote debugger server using the

PyDev→Start Debug Server command, (Figure 6.4.2):

Figure 6.4.2 Commands that control the PyDev remote debugger server

Client: Blender

Server: Eclipse

TCP/IP

Script pydev_debug.py:

 .

 .

 import pydevd

 if trace: pydevd.settrace()

… it starts the
client process!

Once run, the server is listening
the network traffic all the time

This button starts
the server

When you run a
script in Run.py…

Do not confuse this
remote server button
with the local debugger!

150 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

What to do, when these PyDev commands do not appear1 on the toolbar nor menu, as in Figure 6.4.2? Some-

times the Start/End Debug Server commands can be just turned off in the Debug perspective! To enable them,

use the Window→Perspective→Customize Perspective command (Figure 6.4.3):

Figure 6.4.3 Opening the Customize Perspective window

In the Customize Perspective window, open the Action Set Availability tab (Figure 6.4.4):

Figure 6.4.4 Enabling the PyDev remote debugger controls

Find in the Available action set list (on the left) a set named PyDev Debug. Just enable it and then Apply and

Close this dialog. The Start Debug Server and End Debug Server will appear in your current perspective.

When I prepared this book, the Start/End Debug Server buttons were already visible in the Debug perspective. I

did not have to add this action set manually, as described above. I suppose that this issue may be related to the

way in which you have added the Debug perspective to your project. (However, I am not sure).

• By the way, you have learned how to customize Eclipse project perspective ☺.

1 When I installed PyDev for the first time, such a thing just happened in my Eclipse. I spent whole day browsing through all the PyDev

documentation and the user posts from various Internet forums. In parallel, I continually searched various Eclipse menus, looking for these

two missing commands. In the end, I found them. To save you from similar troubles, I am describing here the solution.

Enable this action set

Chapter 6 Others 151

Copyright Witold Jaworski, 2011-2019.

Let’s take care now for the debugger client. Among files that accompany this book you can find the Run.py

script (it is accompanying by the pydev_debug.py file - see page 39). Load Run.py into Blender Text Editor win-

dow (see page 47) using the Text→Open command. Figure 6.4.5 shows its initial contents:

Figure 6.4.5 Auxiliary code for running user scripts in Blender

To debug your script, you have to customize the two constants in this code: SCRIPT and PYDEVD_PATH. But

first, let’s check if the Python in Blender can import the pydev_debug module, as in the Run.py script. (Techni-

cally speaking: let’s check if the pydev_debug.py file is present in one of the Blender PYTHONPATH directories.

One of them is the directory that contains the Blender executable file). You can “mimic” this line of the code in

the Python Console, as in Figure 6.4.6, and make sure that you have got similar response:

Figure 6.4.6 Checking, if Python in Blender can find the pydev_debug module

If the import statement of this module causes an error – check carefully in the Blender Python Console which

directories are listed in its sys.path. Then place the pydev_debug.py file into one of these folders.

In the next step, assign to the SCRIPT constant the full path to your script file. You can easily copy it from the

Eclipse properties window for this project item (Figure 6.4.7):

Figure 6.4.7 Typing the full path of the script to be run

Of course, your path
can be different

Copy this path and paste it
as the SCRIPT value.

Open this item
properties

Do not forget changing all “\” into “/”

152 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The last element you have to update in the Run.py code is the path to a PyDev subfolder named pysrc\ (the

PYDEVD_PATH constant). This is a more difficult, because this subfolder location can be different in various

PyDev versions. The simplest way to find it in your PyDev is to read its path from the PyDev PYTHONPATH. To

do it, open (as I am showing in section 5.6, on page 134) the Run Configrations dialog, and read it from the

PYTHONPATH directories listed in the default running configuration (Figure 6.4.8):

Figure 6.4.8 Determining the PYDEVD_PATH

Unfortunately, you cannot copy directly from the Run Configurations properties the full path of the pyscr\ directo-

ry. You have to open File Explorer and manually “walk along” the path displayed in Eclipse. Make sure, that the

final pysrc\ directory contains the file named pydevd.py. (This is the remote debugger client module, used by the

pydev_debug.py script). If so – copy the full path from the File Explorer address field and paste it as the new

PYDEVD_PATH value. Then change in this string all backslashes (“\”) into slashes (“/”).

1. Select the run configuration
that we have previously pre-
pared for the “classic” Python
(see section 5.6)

2. Find this pysrc\ directory in File
Explorer and make sure that it contains
the pydevd.py file

3. Copy this path and
paste it as the new
PYDEVD_PATH value

Do not forget changing all “\” into “/”

Chapter 6 Others 153

Copyright Witold Jaworski, 2011-2019.

Before debugging a script, set in its code at least one breakpoint, because otherwise it will be executed from the

start to the end without stopping in the debugger. If you wish to trace your code from the very beginning, set the

breakpoint in the line that imports the bpy module (Figure 6.4.9):

Figure 6.4.9 Placing the breakpoint (at the beginning of the script code)

Then go to the Debug perspective and run the PyDev remote debugger server, so it starts listening eventual

requests sent via local network (Figure 6.4.10):

Figure 6.4.10 Starting the PyDev remote debugger server

You can do it using the PyDev→Start Debug Server menu command (see page 150) or by clicking the “bug”

toolbar button with small “P” letter (Figure 6.4.10). Just do not click by mistake the larger “bug” button of the

local debugger! (Note that its icon is larger, without any letter).

When the server is listening, you can run the client process. It is invoked by the customized version of the

Run.py script (I described its modification on previous pages of this section):

Figure 6.4.11 Starting the script to be debugged (with the remote debugger client)

Just click the Run Script button in this Blender window (you can find it on the right side of the window header).

Set in your script at least one breakpoint (double click LMB on

gray strip that runs along the left edge of the editor pane)

Click this button to
run the debug

server…

Do not use similar
button of the local
debugger!

… so the server process starts listen-
ing to port TCP 5678…

Click this button to run the script
that you have in your Eclipse editor

154 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

Run.py loads the script located at given path (the path in the SCRIPT constant) and executes its main code.

While this code is running, Blender window is “frozen”.

But just click into Eclipse, to activate its window! After a few seconds you will see the debugger execution line at

the first breakpoint (Figure 6.4.12):

Figure 6.4.12 The first breakpoint of the debug session

On the left side of the script editor window you can see the Debug panel. It displays the current state of the Py-

thon call stack. In the figure above you can see that the execution started in run.py module (this is our code in

Blender Text Editor). At its line 9 it calls the debug() procedure from pydev_debug.py. It loads (in its line 38) the

script object_booleans.py, which you can see in the Eclipse text editor. At this moment it waits in the breakpoint

at its line 4. Such information can be useful when you are building a solution from several Python files.

While debugging the script, you will frequently check the current state of its variables. For this purpose, PyDev

provides the Variables pane (Figure 6.4.13):

Figure 6.4.13 The Variables panel

Variables panel is divided into the list with names and values of the global and local variables, and the details

area. In the details area PyDev repeats the value of the variable highlighted on the list. I think that it can useful

for checking longer string values or lists.

Debugger has stopped at the first
breakpoint and is waiting for further
commands

You can see our script on
the top of the Python stack

Initially you will see the global variables. They are
created automatically by the Python interpreter

The value from the highlighted line is
also displayed in the bottom pane (just
to have more space for its examination)

Chapter 6 Others 155

Copyright Witold Jaworski, 2011-2019.

When the variable contains a list or object reference, Eclipse displays a triangle () at its name. You can click it,

to expand the list of its members (Figure 6.4.14):

Figure 6.4.14 Browsing the contents of an object

The fields of a class can contain references to other objects (larger green dots). When their values are of one of

the basic Python types (str, bool, int, …), they are marked with smaller dots. PyDev highlights in yellow the

fields/variables that have been changed in the last executed code line.

In the Variables window you can also alter the value of a variable. Usually you will simply type it in the Value

column (Figure 6.4.15):

Figure 6.4.15 Altering the variable value

You can also change them in the detail area (using the Assign Value command from its context menu). Enter

the new values in the native Python syntax: True, False, 1, text, … Do not mimic the “type prefix” (“bool: True”)

you can see in the unaltered variable fields. After executing the current line, PyDev will also highlight in yellow

the variables that you have changed manually.

The Expressions panel is more convenient for tracking the value of a single object field. You can add it to the

current perspective using the Window→Show View→Expressions command (Figure 6.4.16):

Figure 6.4.16 Adding the Expressions panel

Click this triangle to expand the
area object members

Members of the area object:

Value of this field has been
changed in the last executed line

To edit this value, click LMB into its field

Type simply True (instead
of „bool: True”)

156 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The Expressions pane layout is similar to the layout of the Variables pane: it contains the list of the expressions

and their current values. There is also the detail area, showing in a larger field the value of highlighted list item.

Unlike in the Variables pane, Expressions allow you to evaluate any Python expression, at every step of the

script execution (Figure 6.4.17):

Figure 6.4.17 Adding new items to the Expressions list

In the Expressions pane you can simply enter the variable name. However, it is more useful for tracking the

selected fields of an object. In the example above I am evaluating the object field of the object modifier named

Boolean. (At this moment this modifier belongs to the active object). I do it this way, because the modifiers

field returns an iterator instead a list, so you cannot examine its content in the Variables pane. (You can find the

bpy.context object among the global variables, see under Globals→’bpy’→context. See yourself, what you can

do with its modifiers). Unlike in the Variables pane, you cannot edit the Expressions values.

• The Expressions pane is useful for examining the iterators contents, and other objects that you cannot

access via the Variables pane. In particular, it applies to all the Blender API lists.

The quickest way to browse iterator contents is the conversion into the classic Python list, using the standard

list() function (Figure 6.4.21):

Figure 6.4.18 Browsing in the Expressions pane details of the modifiers stack

Of course, do not do it for a very long list. If you are not sure how many elements are in an iterator, you can

check it earlier, using the standard len() function.

In the Expression pane, as in Variables,

you also find the triangle () on the left

side of each complex data type. For

example - you can use it to examine the

contents of the objects that are returned

by the iterator (Figure 6.4.19):

Figure 6.4.19 Examining details of an expression value

… and PyDev immediately
displays its current value

Type (or paste) here the expression
that has to be evaluated…

Pass the iterator you want to
examine as the list() argument…

… so now you can easily
browse its contents

Click LMB to browse contents of the item [0]

Chapter 6 Others 157

Copyright Witold Jaworski, 2011-2019.

Another useful tool for the script debugging is the Eclipse Console panel. While debugging, it receives the out-

put from the Blender system console (see Windows→Toggle system console command in Blender menu).

What’s more, it becomes interactive while the script is running. You can invoke there any command that will be

executed by Blender Python interpreter (Figure 6.4.20):

Figure 6.4.20 Eclipse console while debugging a Blender API script

Of course, you can get the same information using the Expressions pane. However, in this console you can do

more – for example, call a method.

• Although the Blender screen is “frozen” while the API script is running and looks like it was at the moment

you have clicked the Run Script button (see page 153), you can still control it using the Eclipse console.

For example - you can use any Blender command, invoking in the Eclipse console corresponding operator

(one of the bpy.ops methods).

When your script calls the print() method, then in the debug session you can see its results in both: Blender

and Eclipse console (Figure 6.4.21):

Figure 6.4.21 The results of the print() method in the Eclipse console

Also, when you encounter a runtime error (exception) in your script – the Eclipse console will display the same

complete information (Python stack traceback, error message) as it appears in the Blender console.

Commands that you are typing are in green

Blender (Python) responses are in black

Step over (F6)

When you execute this line, you
will see its result in the console

158 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

After executing the last line of your Blender script, the remote debugger steps into an auxiliary file that has load-

ed and run your *.py file (Figure 6.4.22):

Figure 6.4.22 Debugger screen after executing the last line of your script

On the first run it will be the pydev_debug.py auxiliary file, on the next – the other, standard Python module re-

sponsible for module import (“reloading”). Anyway, there is nothing to do here – so click the Resume button (or

press F8) to finish this debug session.

• Unfortunately, I did not find so far any “elegant” solution which would automatically resume execution after

the last script line and finish it without opening the next module in the debug stack.

When you do it, Blender screen “unfreezes”, and you will see all the changes made by your script to the current

scene. If you wish to revert them – just use the Undo command (Ctrl - Z).

Now you can change the script code in the Eclipse editor. To run/debug it anew, just click the Run Script button

in Blender (see page 153, Figure 6.4.11).

• You do not need to stop the PyDev remote debug server. (Keep it running all the time, once you have start-

ed it – as in page 153, Figure 6.4.10). Let it shut down when you close the Eclipse IDE.

• To reload the modified script in Blender and debug it again, just click the Run Script button in Blender (as

shown on page 153).

Once you have modified the Run.py code in the Blender Text Editor, as described in this section, you do not

need to change it anymore. You can keep this code in a test *.blend file attached to your Eclipse project (as in

page 145). All what you need now is its Blender Run Script button. Thus, in your Scripting workspace you can

minimize the Text Editor window with the modified Run.py code just to see its header with this button.

Click Resume (F8)

to finish debugging

Your script has been removed from the stack
(compare this with Figure 6.4.12, page 154),
and at this moment the debugger displays
the auxiliary file pydev_debug.py that has
loaded and run your script (in this example it
was named object_booleans.py)

Chapter 6 Others 159

Copyright Witold Jaworski, 2011-2019.

Finally, a note for all the Readers who use other languages than English: do not place in your API script any

character which ASCII code is higher than 127 (i.e. any character which is encoded as two bytes in the UTF-8

files). In the example below, a single character (“ś” in this case) is enough to block the PyDev debugger. When

you try to execute the currently highlighted line, or resume the execution, nothing happens. Instead, you will see

a traceback and error message in the Eclipse console (Figure 6.4.23):

Figure 6.4.23 PyDev error, caused by a national character (of ASCII code > 127)

Fortunately, you can remove/replace such a character in a comment without quitting the current debug session.

Just fix it in the Eclipse editor (the same where PyDev debugger is highlighting the current line), then save this

script. PyDev automatically updates the saved file in Blender memory, and everything will start working properly:

Step Over, Step Into, and all others debug commands.

Presence of this single character causes an
error in the PyDev code on each attempt to
execute current line

160 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

6.5 What does contain the pydev_debug.py module?

In principle, for tracking script execution in the PyDev remote debugger you have to add to your code just two

following lines (Figure 6.5.1):

 import pydevd

 pydevd.settrace() #<-- debugger stops at the next statement

Figure 6.5.1 The code that loads and activates the PyDev remote debugger client

Of course, to have this code worked, you should add to the current PYTHONPATH the pydevd package folder,

before. Besides, this is just the first point from a longer “to do list” for such an initialization. Hence, these two

lines were expanded to a procedure named debug() (Figure 6.5.2):

'''Utility to run Blender scripts and addons in Eclipse PyDev debugger

Place this file somwhere in a folder that exists on Blender sys.path

(You can check its content in the Blender Python Console)

'''

import sys

import os

import imp

def debug(script, pydev_path, trace = True):

 '''Run script in PyDev remote debugger

 Arguments:

 @script (string): full path to script file

 @pydev_path (string): path to your org.python.pydev.debug* folder

 (in Eclipse directory)

 @trace (bool): whether to start debugging

 '''

 script_dir = os.path.dirname(script) #directory, where the script is located

 script_file = os.path.splitext(os.path.basename(script))[0] #script filename,

 # (without ".py" extension)

 #update the PYTHONPATH for this script.

 if sys.path.count(pydev_path) < 1: sys.path.append(pydev_path)

 if sys.path.count(script_dir) < 1: sys.path.append(script_dir)

 #NOTE: These paths stay in PYTHONPATH even when this script is finished.

 #try to not use scripts having identical names from different directories!

 import pydevd

 if trace: pydevd.settrace(stdoutToServer=True, stderrToServer=True,

 suspend=False) #stop at first breakpoint

 #Emulating Blender behavior: try to unregister previous version of this module

 #(if it has unregister() method at all:)

 if script_file in sys.modules:

 try:

 sys.modules[script_file].unregister()

 except:

 pass

 imp.reload(sys.modules[script_file])

 else:

 __import__(script_file) #NOTE: in the script loaded this way:

 #__name__ != '__main__'

 #That's why we have to try register its classes:

 #Emulating Blender behavior: try to register this version of this module

 #(if it has register() method...)

 try:

 sys.modules[script_file].register()

 except:

 pass

Figure 6.5.2 The pydev_debug.py script

Preparation of the received paths,
updating of the PYTHONPATH

Starts the debugger client

Emulation of the Blender add-on
handling: unregistering the previous
version

Emulation of the Blender add-on
handling: registering the current
version

Execution of the user script

Chapter 6 Others 161

Copyright Witold Jaworski, 2011-2019.

I decided to separate the main startup code that runs the Eclipse script inside Blender into the pydev_debug.py

module. This module contains just single procedure: debug() (Figure 6.5.2). Such a solution allowed for

maximum simplification of the Run.py code — the script template, which you have to update for every new

project (see page 53).

• Place the pydev_debug.py module in the directory, which is present in the Blender Python path (i.e. in one

of directories listed in the content of sys.path). In Windows one of them is the folder that contains the

blender.exe file (see page 39, Figure 3.2.2), but it may be different in the Linux or Mac environments. Just

check your sys.path it in the Blender Python Console.

The whole Run.py code contains just a call to the debug() procedure, with following arguments:

• script: path to the script file that has to be executed;

• pydev_path: path to pydevd.py module (this is the PyDev remote debugger client);

• trace: optional. Set this named argument to True, when the script has to be traced in the

debuuger. Set it to False when you want just to run the script without any break. (When

trace = False, you can run this code without Eclipse — see page 149);

Notice (Figure 6.5.2) that the debug() procedure loads user’s script module using the import statement. It al-

lows for debugging Blender add-ons1. Before this import, debug() attempts to handle the previously loaded

module as the add-on, and to unregister it. If this attempt fails — no error is signaled (not every script has to be

a plugin). When the new script is loaded, debug() tries to register it as a new add-on.

• When you write a Blender add-on script, at the beginning implement the required register() and

unregister() methods. They will allow for properly handling of the Blender registration process, every time

you will click the Run Script button (see page 55).

1 Blender loads the *.py file of an add-on and invokes the register() procedure. (It is supposed that this required module method will register

all the API classes of this plugin). Consequently, Blender calls the unregister() method when the user turns the plugin off. While the add-on

is active, Blender creates the instances of the registered add-on classes, when they are needed. The pydev_debug.py script emulates this

behavior, de-activating, reloading, and then activating again your add-on when you click the Run Script button. However, it cannot help you

in the debugging of an installed Blender add-on. (Thais means an add-on that was copied into Blender addon directory and is visible in the

Blender Preferences window). You need to install your addon just to test the eventual plugin preferences panel (see page 99). Most of the

Blender addons do not need such a feature.

162 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

6.6 The full code of the object_booleans.py add-on

In subsequent chapters of this guide I have gradually created the complete object_booleans.py add-on. The

fragments of its code are dispersed everywhere in this book. However, after so many modifications it is useful to

present the final result in "one piece". If you want to copy this text to the clipboard — beware of the tab spacing!

They are all removed, when you copy the code below directly from this PDF document. It is better to download

this script file from my page.

The script does not fit into a single page, so I decided to divide it into five parts. The first part is a header that

contains the GPL information and the auxiliary debugging statements, which are useful for testing the

preferences panel (Figure 6.6.1):

BEGIN GPL LICENSE BLOCK #####

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

END GPL LICENSE BLOCK #####

'''

Boolean operator (ver. 1.0)

'''

bl_info = {

 "name": "Boolean operations",

 "description": "Performs simple ('destructive') Boolean operation on selected objects",

 "author": "Witold Jaworski",

 "version": (1, 0),

 "blender": (2, 80, 0),

 "location": "Object > Boolean",

 "support": "TESTING",

 "category": "Object",

 "warning": "Still in the 'beta' version - use with caution",

 "wiki_url": "http://airplanes3d.net/scripts-258_e.xml",

 "tracker_url": "http://airplanes3d.net/scripts-258_e.xml",

 }

DEBUG = 0 #A debug flag - just for the convenience (Set to 0 in the final version)

###--- for direct debugging of this add-on (update the pydevd path!) ---------------------------

if DEBUG == 1:

 import sys

 pydev_path = 'C:/Users/me/.p2/pool/plugins/org.python.pydev.core_7.2.1.201904261721/pysrc'

 if sys.path.count(pydev_path) < 1: sys.path.append(pydev_path)

 import pydevd

 pydevd.settrace(stdoutToServer=True, stderrToServer=True, suspend=False) #stop at first breakpoint

###-- end remote debug initialization --

Figure 6.6.1 The object_booleans.py script, part 1 (the declarations)

Continued on the next page…

http://airplanes3d.net/downloads/pydev2/object-booleans.zip

Chapter 6 Others 163

Copyright Witold Jaworski, 2011-2019.

The next part contains the main code, which implements the core operation (Figure 6.6.2):

import bpy

import traceback #for error handling

def boolean_operation (tool, op, apply=True):

 '''Performs a Boolean operation on the active object

 Arguments:

 @tool (Object): the other object, not affected by this method

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply (bool): apply results to the mesh (optional)

 '''

 obj = bpy.context.object #active object

 bpy.ops.object.modifier_add(type='BOOLEAN')#adds new modifier to obj

 mod = obj.modifiers[-1] #new modifier always appear at the end of this list

 while obj.modifiers[0] != mod: #move this modifier to the first position

 bpy.ops.object.modifier_move_up(modifier=mod.name)

 mod.operation = op #set the operation

 mod.object = tool #activate the modifier

 if apply: #applies modifier results to the mesh of the active object (obj):

 if obj.users > 1 or obj.data.users > 1: #obj has to be a single-user datablock

 #make sure, that obj is the only selected object:

 bpy.ops.object.select_all(action='DESELECT') #deselect all

 obj.select_set(True) #select obj, only

 bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True)

 bpy.ops.object.modifier_apply(apply_as='DATA', modifier=mod.name)

#result constants:

INPUT_ERR = 'ERROR_INVALID_CONTEXT'

ERROR = 'ERROR'

WARNING = 'WARNING'

SUCCESS = 'OK'

def main (op, apply_objects=True, cntx=None):

 ''' Performs a Boolean operation on the active object, using the other

 selected objects as the 'tools'

 Arguments:

 @op (Enum): a Boolean operation: {'UNION', 'INTERSECT', 'DIFFERENCE'}

 @apply_objects (bool): apply results of the Boolean operation to the mesh (optional)

 @cntx (bpy.types.Context): overrides current context (optional)

 @returns (list): one or two message parts: [<flag>, Optional_details]

 '''

 try:

 if cntx == None: cntx = bpy.context

 selected = list(cntx.selected_objects) #creates a static copy

 active = cntx.object #active object

 if active in selected: selected.remove(active)

 #input validation:

 if active.type != 'MESH':

 return [INPUT_ERR, "target object ('%s') is not a mesh" % active.name]

 if active.library != None or active.data.library != None:

 return [INPUT_ERR, "target object ('%s') is linked from another file" % active.name]

 if not selected: return [INPUT_ERR, "this operation requires at least two objects"]

 #main loop

 skipped = []#auxiliary list for the skipped object names

 for tool in selected: #Apply each tool to the active object:

 if tool.type == 'MESH':

 boolean_operation(tool,op, apply_objects)

 else: #store the name of the skipped object

 skipped.append(tool.name)

 #let's look at the results:

 if not skipped: return [SUCCESS]

 if len(skipped) < len(selected): #still there are a few processed objects"

 return [WARNING, "completed, but skipped non-mesh object(s): '%s'"

 % str.join("', '",skipped)]

 else: #no object was processed:

 return [INPUT_ERR, "non-mesh object(s) selected: '%s' " % str.join("', '",skipped)]

 except Exception as err: #Just in case of a run-time error:

 traceback.print_exc() #print the Python stack details in the console (for you)

 cntx_msg = "" #format the diagnostic message:

 if 'active' in locals(): cntx_msg += "occurred for object(s): '%s'" % active.name

 if 'tool' in locals(): cntx_msg += ", '%s'" %tool.name

 return [ERROR, "%s %s" % (str(err),cntx_msg)]

Figure 6.6.2 The object_booleans.py script, part 2 (core code)

Continued on the next page…

164 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The next part contains the required API “framework”: the operator class. There is also another API class that

implements the pie menu (Figure 6.6.3):

#---------- ### Operator -----------

from bpy.props import EnumProperty, BoolProperty

class OBJECT_OT_Boolean(bpy.types.Operator):

 '''Performs a 'destructive' Boolean operation on the active object

 Arguments:

 @op (Enum): Boolean operation, in ['DIFFERENCE', 'UNION', 'INTERSECT']

 @modifier (Bool): add this operation as the object modifier

 '''

 bl_idname = "object.boolean"

 bl_label = "Boolean"

 bl_description = "Perform a Boolean operation on active object"

 bl_options = {'REGISTER', 'UNDO'} #Set this options, if you want to update

 # parameters of this operator interactively

 # (in the Tool pane)

 op : EnumProperty(items = [

 ('DIFFERENCE',"Difference","Boolean difference", 'SELECT_SUBTRACT',1),

 ('UNION',"Union","Boolean union", 'SELECT_EXTEND',2),

 ('INTERSECT',"Intersection","Boolean intersection", 'SELECT_INTERSECT',3),

],

 name = "Operation",

 description = "Boolean operation",

 default='DIFFERENCE',

) #end EnumProperty

 modifier : BoolProperty(name = "Keep as modifier",

 description = "Keep the results as the object modifier",

 default = False,

) #end BoolProperty

 @classmethod

 def poll(cls, context):

 return (context.mode == 'OBJECT')

 def execute(self, context):

 main(self.op, apply_objects = not self.modifier, cntx = context)

 return {'FINISHED'}

 def invoke(self, context, event):

 result = main(self.op, apply_objects = not self.modifier, cntx = context)

 if result[0] == SUCCESS:

 return {'FINISHED'}

 else:

 self.report(type = {result[0]}, message = result[1])

 return {'FINISHED' if result[0] == WARNING else 'CANCELLED'}

#---------- # Pie Menu (invoked by the hotkey) -----------

class VIEW3D_MT_Boolean(bpy.types.Menu):

 '''This pie menu shows Boolean operator options.

 Invoked by the hotkey assignet to this add-on

 '''

 bl_idname = "VIEW3D_MT_Boolean" #Menu identifier has to contain a '_MT_'

 bl_label = "Select operation" #Central label of the pie menu

 def draw(self, context):

 pie = self.layout.menu_pie()

 pie.operator_enum(OBJECT_OT_Boolean.bl_idname, property="op")

Figure 6.6.3 The object_booleans.py script, part 3 (API classes)

Continued on the next page…

Chapter 6 Others 165

Copyright Witold Jaworski, 2011-2019.

In this fourth part you can find the implementation of the addon preferences and the procedures that add and

remove the keyboard shortcut (Figure 6.6.4):

#---------- # Add-On Preferences -----------

#default values for the keymap_items.new() call (see register_keymap() method, below)

hotkey_defaults = {"idname": 'wm.call_menu_pie',

 "type": 'D', "value": 'PRESS', "shift": False, "ctrl": False, "alt":False}

class Preferences(bpy.types.AddonPreferences):

 '''This class provides the user pssibility of altering the keyboard shortcut

 assigned to the Boolean pie menu

 '''

 bl_idname = __name__ #do not change this line

 def on_update(self, context):

 unregister_keymap()

 register_keymap()

 shift : BoolProperty(name = "Shift", description= "Use the [Shift] key",

 default=hotkey_defaults["shift"], update = on_update)

 ctrl : BoolProperty(name = "Ctrl", description= "Use the [Ctrl] key",

 default=hotkey_defaults["ctrl"], update = on_update)

 alt : BoolProperty(name = "Alt", description= "Use the [Alt] key",

 default=hotkey_defaults["alt"], update = on_update)

 key : EnumProperty(items = [('NONE',"None","No hotkey")] +

 [tuple([chr(i),chr(i),"[%s] key" % chr(i)]) for i in range(65, 91)],

 name = "Keyboard key",

 description = "Selected keyboard key",

 default = hotkey_defaults["type"],

 update = on_update

)

 def draw(self, context):

 row = self.layout.row(align=True)

 row.alignment = 'LEFT'

 row.separator(factor = 10)

 row.prop(self,"key", text="Keyboard shortcut")

 row.separator(factor = 3)

 row.label(text="with:")

 row.prop(self,"shift")

 row.prop(self,"ctrl")

 row.prop(self,"alt")

#---------- # hotkey registartion

addon_keymaps = [] #global list for this add-on keyboard shortcut definitions

def register_keymap():

 '''Registers current hotkey'''

 #assumption: at this moment the addon_keymaps[] list is empty

 args = hotkey_defaults #use defaults in case when there is no preferences

 if Preferences.bl_idname in bpy.context.preferences.addons: #update args, according preferences:

 prf = bpy.context.preferences.addons[Preferences.bl_idname].preferences

 args["type"] = prf.key #use the user-defined key and its modifiers:

 args["shift"], args["ctrl"], args["alt"] = prf.shift, prf.ctrl, prf.alt

 else:

 prf = None

 if args["type"]== 'NONE' : return #do nothing (no shortcut)

 key_config = bpy.context.window_manager.keyconfigs.addon

 if key_config:

 key_map = key_config.keymaps.new(name = "Object Mode")

 hotkey = key_map.keymap_items.new(**args) #invoked command: args["idname"]

 hotkey.properties.name = VIEW3D_MT_Boolean.bl_idname #pie menu to open

 addon_keymaps.append((key_map,hotkey))

 if DEBUG: print("Keyboard shortcut set to: " + ("[Shift]-" if args["shift"] else "")

 + ("[Ctrl]-" if args["ctrl"] else "") + ("[Alt]-" if args["alt"] else "")

 + ("[%s]" % args["type"]) + (" (from add-on preferences)" if prf else ""))

def unregister_keymap():

 '''Removes current hotkey (if any)'''

 key_config = bpy.context.window_manager.keyconfigs.addon

 if key_config:

 for key_map, hotkey in addon_keymaps:

 key_map.keymap_items.remove(hotkey)

 addon_keymaps.clear()

Figure 6.6.4 The object_booleans.py script, part 4 (implementation of the add-on preferences)

Continued on the next page…

166 Appendices

Programming Add-Ons for Blender 2.8 — version 2.0 www.airplanes3d.net

The last part registers the API classes and adds the operator to the Object menu (Figure 6.6.5):

#---------- ### Register -----------

from bpy.utils import register_class, unregister_class

def menu_draw(self, context):

 #draws the menu item that invokes this operator (actually – a submenu of its options)

 self.layout.operator_context = 'INVOKE_REGION_WIN'

 self.layout.operator_menu_enum(OBJECT_OT_Boolean.bl_idname, property="op")

#list of the classes in this add-on to be registered in Blender API:

classes = [

 OBJECT_OT_Boolean,

 VIEW3D_MT_Boolean,

 Preferences,

]

def register():

 for cls in classes:

 register_class(cls)

 bpy.types.VIEW3D_MT_object.prepend(menu_draw) #add this operator to the Object menu

 register_keymap()

 if DEBUG: print(__name__ + ": registered")

def unregister():

 unregister_keymap()

 bpy.types.VIEW3D_MT_object.remove(menu_draw)

 for cls in classes:

 unregister_class(cls)

 if DEBUG: print(__name__ + ": UNregistered")

#---------- ### Main code -----------

if __name__ == '__main__':

 register()

Figure 6.6.5 The object_booleans.py script, part 5 (add-on registration)

Chapter 6 Others 167

Copyright Witold Jaworski, 2011-2019.

Bibliography

Books

[1] Thomas Larsson, Code snippets.Introduction to Python scripting for Blender 2.5x, free e-book,

2010.

[2] Guido van Rossum, Python Tutorial, (part of Python electronic documentation), 2011

Internet

[1] http://www.blender.org

[2] http://www.python.org

[3] http://www.eclipse.org

[4] http://www.pydev.org

[5] http://wiki.blender.org, in particular http://wiki.blender.org/index.php/Extensions:Py/Scripts

http://www.blender.org/
http://www.python.org/
http://www.eclipse.org/
http://www.pydev.org/
http://wiki.blender.org/
http://wiki.blender.org/index.php/Extensions:Py/Scripts

If you already have some programming experience in Python and want to write

an add-on for Blender 3D, then this book is for you!

I am showing in this guide how to arrange a convenient development environ-

ment for writing Python scripts for Blender. I use Eclipse IDE, enhanced with

PyDev plugin. Both elements are the Open Source software. It is a good combi-

nation that provides all the tools shown on the illustrations around this text.

The book contains a practical introduction to the Blender Python API. It de-

scribes the process of writing a new add-on. I discuss in detail every phase of

the implementation, showing not only the tools, but also explaining the methods

that I use. These pages will allow you to gain the skill needed to write your own

Blender tools.

Debugger

Code Completion Python API

Project
Explorer

ISBN: 978-83-941952-1-2 Free electronic publication

	Table of Contents
	Introduction
	Conventions
	Preparations
	Chapter 1. Software Installation
	1.1 Python (standalone interpreter)
	1.2 Eclipse
	1.3 PyDev

	Chapter 2. Introduction to Eclipse
	2.1 Creating a new project
	2.2 Writing the simplest script
	2.3 Debugging

	Creating the Blender Add-On
	Chapter 3. Basic Python Script
	3.1 Problem formulation
	3.2 Adapting Eclipse to Blender API
	3.3 Developing the core code
	3.4 Launching and debugging Blender scripts
	3.5 Improving our script
	3.6 Handling the runtime errors and user messages

	Chapter 4. Converting API Script into Blender Add-On
	4.1 Adaptation of the script structure
	4.2 Adding operator command to a Blender menu
	4.3 Dynamic interaction with the user
	4.4 Keyboard shortcut and a pie menu
	4.5 Implementation of the add-on preferences panel

	Appendices
	Chapter 5. Installation Details
	5.1 Details of Python installation
	5.2 Details of Java Runtime Environment (JRE) installation
	5.3 Details of Eclipse and PyDev installations
	5.4 Details of the PyDev configuration
	5.5 Managing Eclipse project perspectives
	5.6 Configuring the running and debugging commands for standalone Python scripts

	Chapter 6. Others
	6.1 Updating Blender API predefinition files
	6.2 Enabling Blender API code autocompletion in a PyDev project
	6.3 Importing/linking an existing file to a PyDev project
	6.4 Details of debugging Blender scripts
	6.5 What does contain the pydev_debug.py module?
	6.6 The full code of the object_booleans.py add-on

	Bibliography

