Witold Jaworski

-
“ Blender

§®¢ e

8 T R = :
S User Persp o

A
-nder S
Image Editor 5
L =
Dimensior e
Render Presets =

 x1920 [« sl ¢
: S ewaso]
B 22 :

%
5 11 16 | Mitchell-Netravali ¥
- + Size:1.000 ¢
- ; N
s
" Taxtures " Ray Tracing
" Shadows " Color Managemen
v .
b Subsurface Scatter Sky v

Programming Add-Ons
for Blender 2.5

Writing Python Scripts
with Eclipse IDE

version 1.01

Programming Add-Ons for Blender 2.5 - version 1.01

Copyright Witold Jaworski, 2011.

wjaworski@airplanes3d.net
http://www.airplanes3d.net

Reviewed by Jarek Karpiel

| would also to thank Dawid O$rédka and PKHG (from the blenderartists.org forum) for their comments.

E%' MG HD

This book is available under Creative Commons license Attribution-NonCommercial-NoDerivs 3.0 Unported.

ISBN: 978-83-931754-2-0

http://www.airplanes3d.net/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1 Software Installation 3

Table of Contents

BE= o] (SR o) @0 o1 (=T o PSP PRSP 3
] (o To (U Tt o o HA PSP PPPR PRSP 4
1070 0171 o1 1o} o 1S PP PT PR 5
(=T = = L1 1SR 6
Chapter 1. Software INSTAllAtioNceeiiiiiiiiiiiiei e e e e e e e e e e e e s s st e e e e e e e s s snnnnrareeeaeees 7
00 R Y, 1 0T] T O TP U PSP OPPRPO 8

O T] o= TP PP OUPPPTPPPPRN 10

IO T Y B =Y SRR RPOPPRR 13
Chapter 2. INtrodUCtION t0 ECHPSEuvviiiiiee et e e e e e s e e e e e e e s st e e e e e e e e ssnnnnraneeaaeaeas 17
2.1 Creating 8 NEW PIOJECTeiiitiiieeiiieeeeitteee e sttt e e e atbe e e e sbe et e e st e et e e abte e e e sk be e e e s asbe e e e s bbe e e e e anbb et e s annneeeesnnneeens 18

2.2 WIriting the SIMPIEST SCIIPL ...eeee i e e e s e e e e e s e st e e e e e e s e s nnteaaeereeeeeannnnenneees 24

pZ T B 1= o 10 o T |1 o SRR 27
Creating the BIENTEr AGU-ONooiiiiiie ittt e ettt e e st e e e e e s be e e e e aabe et e e abbeeeesabbeeeeabreeeeanes 32
Chapter 3. BasiC PYtNON SCIPL ...ccoiiiiiieiiiiii et e et e e st e e e 33
3.1 The problem to SOIVE ... 34

3.2 Adapting Eclipse to the Blender AP ... 39

3.3 DeVeloping the COME COUR.........uuiiiiiiiie ettt e bt e e et e e e bt e e e e e nbne e e e nneeas 48

3.4 Launching and debugging Blender SCrptS ..., 58

3.5 Using Blender commands (OPEFatOrS)ccceeeeiieiiii e 65
Chapter 4. Converting the Script into Blender Add-ONoocuiiiiiiiioiiie e 74
4.1 Adaptation Of the SCHPL SIIUCTUIE.........ooiiiiiie ittt e e e e e e e e 75

4.2 Adding the operator command to a Blender menu ... 84

4.3 Implementation of dynamic interaction withthe user.................cc 92

F Y o] 1] o To [T T TP OT PR PPPPPPO 98
Chapter 5. INStallation DELAIIS..........uuuuuii s 99
5.1 Details of Python installation ... 100

5.2 Details of the Eclipse and PyDeV iNStallationcooiuiiiiiiiiiiiiie e 103

5.3 Details of the PYyDeVv CONfIQUIALIONoiuiiiiiiiiieei ittt ettt ebe e e e 110
CRAPLEE 6. OIS .. s 113
6.1 Updating the Blender APl predefinition fileS...... ..o 114

6.2 Importing an existing file to the PYDEV PrOJECEcoiiiiiiiiiiiiie ittt 118

6.3 Details of the Blender SCriptS debUGQING 124

6.4 What does contain the pydev_debug.py MOAUIE?uiiiiiiiiiii e 129

6.5 The full code of the mesh_bevel.py add-0n ... 131

2] o] [ToTo [r=T o] o}V P PP O PPRPPPPRRNE 134

Copyright Witold Jaworski, 2011.

4 Preparations

Introduction

To extend the standard functionality of Blender with new commands, you can use Python scripts. Many useful
add-ons were created this way. Unfortunately, Blender is missing something like an integrated development
environment ("IDE") for the script programmers. "In the standard" you will find only the Text Editor that highlights
the Python syntax, and the Python Console. It is enough to create simple scripts, but begins to interfere when
you work on larger program. Particularly troublesome is the lack of a "windowed" debugger. In 2007, | wrote an
article that proposed to use for this purpose two Open Source programs: SPE (the editor) and Winpdb (the
debugger). Jeffrey Blank published it a few months later on the wiki.blender.org.

In 2009 it was decided that the new, rewritten "from the scratch" Blender version (2.5) will have a completely
new Python API. What's more, developers have embedded in this program the new Python release (3.x), while
previous Blender versions used the older ones (2.x). Python developers also decided to break the backward
compatibility between these versions. In result, the GUI library used by SPE and Winpdb — wxPython — does
not work with Python 3.x. Worse still, no one is working on its update. It seems that the both tools have become
unavailable for newer Blender versions.

| decided to propose a new developer environment, based on the Open Source software. This time my choice
fell on the Eclipse IDE, enriched by the PyDev plugin. Both products have been developed for 10 years, and do
not depend on any particular Python version. (Internally they are written in Java, thus are not exposed to such
problems like SPE and Winpdb, written in Python). To check this solution in practice, | ported all my scripts to
the Blender 2.5 Python API using this framework. Some of my add-ons had to be rewritten from scratch. Based
on this experience | think that this new environment is better than the previous one.

| think that the best way to present a tool is to show it at work. | have described here the creation of a new
Blender command that bevels selected edges of a mesh. (It is a restoration of the "old" Bevel command from
Blender 2.49). This book requires an average knowledge of Python and Blender. (Yet, you may know nothing
about Python in Blender). To understand the part about creating the final add-on (Chapter 4) you should also be
familiar with the basic concepts of object-oriented programming such as "class", "object", "instance", "inher-
itance". When it is needed (at the end of Chapter 4), | am also explaining some more advanced concepts (like
the "interface" or "abstract class"). This book introduces you to the practical writing of Blender extensions. | am
not describing here all the issues, just presenting the method that you can use to learn them. Using it, you can

independently master the rest of the Blender API (creating your own panels or menus, for example).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://wiki.blender.org/index.php/Doc:Tutorials/Extensions/Python/Editors/SPE

Chapter 1 Software Installation 5

Conventions

In the tips about the keyboard and the mouse | have assumed, that you have a standard:
e US keyboard, with 102 keys (you will find also some comments about a non-standard notebook
keyboard, like the one used by me);
e Three-button mouse (in fact: two buttons and the wheel in the middle. When you click the mouse
wheel, it acts like the third button).

Command invocation will be marked as follows:

Menu ->Command means invoking a command named Command from a menu named Menu. More arrows
may appear, when the menus are nested!
Panel:Button means pressing a button named Button in a dialog window or a panel named Panel.

Pressing a key on the keyboard:

— the dash (“-“) between characters means that both keys should be simultaneously
pressed on the keyboard. In this example, holding down the key, press the |K| key;

, the coma (“,”) between characters means, that keys are pressed (and released!) one

after another. In this example type |G| first, then |X| (as if you would like to write ,gx”).

Pressing the mouse buttons:

left mouse button

right mouse button

858

middle mouse button (mouse wheel pressed)

Last, but not least — the formal question: how should | address you? Typically, the impersonal form ("something
is done") is used in most manuals. | think that it makes the text less comprehensible. To keep this book as read-
able as possible, | address the reader in the second person ("do it"). Sometimes | also use the first person ("I've
done it", "we do it"). It is easier for me to describe my methods of work this way".

! While coding and debugging | thought about us - you, dear Reader, and me, writing these words - as a single team. Maybe an imaginary
one, but somehow true. At least, writing this book | knew that | had to explain you every topic with all details!

Copyright Witold Jaworski, 2011.

6 Preparations

Preparations

In this section, | am describing how to build (install) an appropriate environment for the programmer (Chapter 1).
Then | am introducing you in the basics of the Eclipse IDE and its PyDev plugin (Chapter 2).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 1 Software Installation

Chapter 1. Software Installation

The integrated development environment, described in this book, requires three basic components:
- external (“standard”) Python interpreter (required to let PyDev to work properly);
- one of the Eclipse “packages”;
- the Eclipse plugin: PyDev;

This chapter describes how to set them up.

| assume that you already have installed Blender.
(This book was written using Blender 2.57. Of course, you can use any of its later versions).

Copyright Witold Jaworski, 2011.

8 Preparations

1.1 Python

Blender comes with its own, embedded Python interpreter. Check its version, first. To do it, switch one of the
Blender windows to the Python Console, and read the version number written in the first line (Figure 1.1.1):

= Console | Autocomnplete

Mar 4 20811,

Switch into the
® Python Console

— Y This is the version number of bov
IRl the Python interpreter oo

from mathutils import *; from math import ®

Figure 1.1.1 Reading the version number of the embedded Python interpreter.

Blender on the illustration above uses Python 3.2 (it is Blender 2.57). You should always install the same ver-
sion of the external Python interpreter, although minor differences in them are not the problem.

You can download the external Python interpreter from the www.python.org (Figure 1.1.2):

Q N python.org || ey || K "’l FRlR
< 7 Ulubione @ Downlaad Pythan 2.':\ ~ [) v [e= o~ Strona - Bezpieczeristwo » Marzedzia - @v i
TrTeT =
Source Download Python
= The current production versions are Python 2.7 1 and Pythop 3.2
COMMUNITY
FOUNDATION Start with one of these versions for Iearning F"_l;’thﬂl"l orif you ‘f:.-'ant the most stability they're
CORE DEVELOPMENT poth considered stable production releases !

[T H [}
Python Wiki If you don't know which version to use, start with Python 2.7: more existing third party

Python Insider Blog software is compatible with Python 2 than Python 3 right now|
Python 2 or 37 |
Help Maintain Website Forthe MD3 checksums and OpenPGP signatures. look at thlle detailed Python 2.7 1 page

|
« Python 2.7 .1 Windows Installer (Windows binary - does hot include source)
L) J

fgil = Python 2.7.1 Windows X86-54 Installer (Windows AMDG4/ Intel 64 / X56-64 binary [1]
-- does not include source) :

> + Python 2.7.1 Mac OS X 32-bit 1386/PPC Installgptemeitasd OOl BB L2
- W) e ~|Download the same Python
A3 = Python 2.7.1 I L BA-DIt32-Dil Xxgh-b4/135) : ;
‘ _ “|version, as used in your Blender
= Python 2.7.1

MNon-English Resources)) -
« Python 2.7.1 bzipped source tarbalf/(for Linux, Unix or Mac OS X, more compressed)

Release Schedule

Python 2.6.7rc1
. F'""hCﬂ 3.2 Windows x86 M3 Installer (Windows blnarv -- does not include SOUFCEI

« Python 3.2 Windows X86-64 M3 Installer (Windows AMDE4 [Intel 64 / X86-64 binary
[1] - does not include source)

niedziela, 15 maj
Python 3.2 1rc1

Figure 1.1.2 Downloading the external Python interpreter (from http://www.python.org/download)

As you can see, Python currently has two branches due to the lack of backward compatibility: 2.x and 3.x. We
are interested in the latter.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.python.org/
http://www.python.org/download

Chapter 1 Software Installation 9

e Before downloading the external Python interpreter, you can also check if you do not have it already in-
stalled on your computer. Try to invoke in the command line following program:
python —-version

If you have it installed, it will launch the console, as in Figure 1.1.1. You can read its version number, there.

It may happen that you will not find on www.python.org exactly the same Python version that is embedded in
your Bender (I mean the difference "after the dot" of the number). Use the newer version, in such case. Blender
2.5 always uses its embedded interpreter, even when the external Python is available in your system. For ex-
ample, if you use version 3.3 of Python as the external interpreter, there should be no problem in writing scripts
that are interpreted internally in Blender by its embedded Python in version 3.2. (Practically, the differences be-
tween minor Python versions are not big).

Run the downloaded program as required in your operating system. There is just an installer for Windows
(Figure 1.1.3). (To install it, you need an account with the Administrator privileges, on your computer):

X

i Python 2.5.2 Setup (| ll /& Python 2.5.2 Setup

Customize Python 2.5.2

Install Python 2.5.2

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features will be installed,

Please wait while the Installer installs Python 2.5.2, This may take
several minutes.

= Python
=0~ | Register Extensions
Tolf Tk Status:
Documentation
Uity Scripts !
Test suite

Python Interpreter and Libraries

p gth()ﬂ This feature requires 18ME on your hard drive, It
has 5 of 5 subfeatures selected, The subfeatures
require 18MB on your hard drive,

windows

[Disk Usage] [Advanced] [< Back J[_Mext > | [Cancel]

Figure 1.1.3 Selected screens of the Python installer (for Windows)

There is nothing special in this process. Just accept the default settings and keep pressing the Next button to
the end of the installation (detailed description — see section 5.1, page 100).

Copyright Witold Jaworski, 2011.

http://www.python.org/

10 Preparations

1.2 Eclipse

Go to the downloads directory on the Eclipse project page (www.eclipse.org/downloads — Figure 1.2.1):

& Eclipse Downloads - Program Windows Internet Explorer dostarczony przez

i eclipse.ar
Sl S |E I:' g

57 Ulubione B Eclipse Downloads

@+ Eclipse IDE for C/C++ Developers 27 LB
Downloaded 408 551 Timez Details V\

] "N___[Select the smallest
& Eclipse for PHP Developers, 14118 package
Downloaded 234 703 Timez Details

Figure 1.2.1 Downloading an Eclipse package (this screen was captured on March 2011)

When you look at the descriptions on the page, you will notice that Eclipse is available in many different pack-
ages. Each of them is prepared for the specific language / programming languages. (You can still create a C ++
program in any other package, for example "Eclipse for PHP Developers". Just add the appropriate plugins)!
What you see are just typical packages, prepared "in advance". They correspond to the most common needs.
There is no any special “Eclipse for Python” package, so | would propose to download Eclipse for Testers or
Eclipse IDE for C/C++. (Always choose the smallest and least-specific package). The installation details are
described on page 103.

Eclipse developers do not prepare any Windows installers. In the downloaded file, you will find a zipped folder
with ready-to-use program. Just unpack it — for example, to the Program Files (Figure 1.2.2):

@ C:\Documents and Settingsw4979721\WMy Documentsibylecoleclipse-cpp-helios-SR2-wi... |Z| |E|

x]

Plik. —Edycja Widok Ulubione Marzedzia Pomoc ;1.
fdres |:§ Ci\Documents and Sethingsiwd 979721 My Du:ucuments'l,l:uylecu:u'{eclipse-cpp-helins-SRE-winSE.zip b | Przejdz
Foldery = Mazima Typ Rozmi. .. Ma ...
(| eclipse File: Folder OKE
) Intel m cclioe Ny
=] MSOCach oS The downloaded *.zip file
Sl Frogram Files N contains a folder with a pro-
= 1E e gram ready to use.
7-7i * .
D 7zp Just unpack it to the Program
) Adobe Files directory.
|5 ALLConverter PRO

I ALLPlayer
I3 Apache Software Foundation
I3 Blender
I3 Blender-2.49
I3 blender-2.56
| Blender-2.57 3
|5 Blender-2.57a
|5 Cisco Systems
I3 Common Files
I3 ComPlus Applications
|5 eclipse.cpp
|5 eclipse.org

Figure 1.2.2 Eclipse “installation” — just unzipping the downloaded file

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.eclipse.org/downloads

Chapter 1 Software Installation 11

The main program is eclipse\eclipse.exe (Figure 1.2.3). You can add its shortcut to your desktop or menu.

@ C:\Program Filesleclipse

. . " . . '
Plil. Edycja Widok Ulubione Marzedzia Pomoc '1.
Adres ||.f.‘ C:\Program Filesiedlipse v| Proeids
Faldery X Mazwa Rozmiar = Tvp
I Common Files ~ I)configuration File Folds
I ComPlus Applications |2 dropins File Folds
= |2 eclipse ICfeatures File Falds
IC5) configuration 2Pz File: Folds
I3 dropins I plugins File Folds
IC7) Features [ireadme File Faldsg
2 p2 Run it, to start 1 KB Plk ECLIF
I3 plugins Eclipse E3KE Dokume
I readme 52 KE Applicati
I edipse.cpp / 1KE Configur
I edipse.org Feclipsec. exe 24 KE Applicati
) Filezila 8] epl-v10. html 17KE HTML Do
) GImp @ notice. hti 9KE HTML Do

Figure 1.2.3 Running Eclipse (for Windows)

e Eclipse requires the Java Virtual Machine. Most likely, you have it already installed on your computer. If not
— download it from the www.java.com (details — page 103).

When you start the eclipse.exe program, it displays a dialog where you can specify the folder for future projects.
This location is called a “workspace” (Figure 1.2.4):

&= Workspace Launcher D_<|

Select a workspace

The user’s home directory.

Eclipse stores wour projects in a folder called a warkspace, >
(Beware, it is not My Documents!)

Choose a workspace Folder bo use For this session,

Workspace: | _:\Documents and Settingshw497972 v| [Browse, ..]

| [] Use this as the default and do not ask again

Here you can permanently turn off this dialog &R l [

Cancel

Figure 1.2.4 The question about the actual workspace

Eclipse creates a separate subdirectory for each project, here. Such folder contains Eclipse internal data files
and your scripts. (You can also place there a shortcut to a script located elsewhere on the disk). Each work-
space directory contains, in addition to the projects folders, its own set of Eclipse preferences. It includes con-
figuration of the Python interpreter. The workspace folder is created in the user home directory™. (In this example
it is the directory of user W4979721). Usually it is enough to have just one workspace.

! Note for the Windows users: My Documents folder is also located there. This is just the Unix/Linux convention. If you are used to keep all
your data in the My Documents folder - change the path in Workspace Launcher dialog. Eclipse will create a workspace folder at the speci-
fied location.

Copyright Witold Jaworski, 2011.

http://www.java.com/

12 Preparations

Then the Unable to Launch message may appear (I have got it on my Eclipse 3.6 — see section 5.2, Figure
5.2.5). Do not worry about it! Eclipse is always trying to open your last project, saved in the folder. Yet, on the
first run, there is nothing there. So the program “is surprised”, and displays such a warning.

On the first run, Eclipse displays window with the Welcome tab. It contains shortcuts to several Internet sites,
related to this environment (Figure 1.2.5):

& C/C++ - Eclipse

File Edit Source Refactor Mavigate Search Run Project Window Help

‘@Welcome_iga {3y A A E S

s New
Find out what is new ‘

Figure 1.2.5 Eclipse screen on the first run

Now we have to add to Eclipse the PyDev plugin, which will adapt this environment for the Python scripts.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 1 Software Installation 13

1.3 PyDev

For PyDev installation use the internal Eclipse mechanism, designed for the plugins.

e NOTE: To perform steps, described in this section, you have to be connected to the Internet

To add a plugin, use the Help 2Install New Software command (Figure 1.3.1):

Welcome

{Z) Help Contents
Q%’-' Search
Crynarnic Help

Keyw Assisk, .,
Tips and Tricks. ..

E Repart Bug ar Enhancement, ..

Cheat Sheets, .,

Check for Updates

Ctrl+Shift+HL

Adds new components to
this Eclipse environment

Install Mews Software, .

Eclipse Marketpi&ce. ..

About Eclipse

Figure 1.3.1 Opening the Install wizard for the Eclipse plugins

In the Install dialog, type the following address: http://pydev.org/updates (Figure 1.3.2):

& Install

Available Software

Select a site or enter the location of a sike,

- [B]X]
Type the address of the special \)
|

PyDev project directory... -

[
Work, with:en http: i pydey . orgfhpdates

vl Add...

Find more software by working with the "awailable Software Sites’/fr Ces.
——

... and press
this button! _/ |

Mame
] (L) There is no site selected,

Mame: | | [Local, ..]

Location: | htkp s fpydey argfupdates | [Archive. .,]

® [Ok l [Cancel]
M

Version

& Add Repository

Figure 1.3.2 Adding the PyDev location to the list of the plugin sources

Then press the Add button. That opens the Add Repository dialog, which you can simply confirm.

Copyright Witold Jaworski, 2011.

http://pydev.org/updates

14 Preparations

Eclipse will read it, and after a moment it will display the contents of this repository (Figure 1.3.3):

& Install |:|®

Available Software
Check the items thak vou wish boinskall, —!
oy
work with: | http: {ipydev.orgiupdates vl add. |

Find more safftware by working with the "&vailable Software Sikes” preferences,

| Select this |

Marme N component... Version
[[«] 000 PyDew T
[1000 PyDew Mylyn Integration {optional)
Select Al] [Deselect Al 1 item selected
Details
Show anly the latest versions of available software [] Hide items that are already installed
Group items by category What is already installed?

Contact all update sites during install ko find required software

... then press
Next

©

Figure 1.3.3 Selecting the PyDev plugin to install

Select the PyDev plugin from there then press the Next button. After passing some helper screens (one with
detailed list of selected components, another with the license agreement — see section 5.2, page 103), the
installation progress window will appear (Figure 1.3.4):

& |nstalling Software |:| E| E'

i J Installing Software

(RENNANANRARARAAE)

Downlaading org. eclipse. jdt.debug

[] always run in background %

IRun in Backgru:uund” Zancel ” Details ==]

Figure 1.3.4 The installation progress window

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 1 Software Installation 15

After downloading, Eclipse will display the certificates of Aptana® PyDev for your confirmation. Finally, you will
see a message about the need to restart Eclipse (Figure 1.3.5):

& Software Updates E

You will need ko restart Eclipse for the inskallation changes to take effect, You
\tf) may kry bo apply the changes without restarting, but this may cause errors,

[Restart Mo RJ [Mot P] [.ﬁ.ppl';.f Changes Mow

Figure 1.3.5 Final window

Do it as the precaution.

Eclipse saves separate configuration for each workspace (Figure 1.2.4). The default Python interpreter is also
among these parameters. Let's set it straight away. To do it, invoke the Window =>Preferences command
(Figure 1.3.6):

& CIC++ - Eclipse

File Edit Source Refactor Mawvigate Search Project Run BUGGEEN Help

f i '

'-.-'-.-'elu:u:ume 52 Mew Window S AT AR = 5
Mew Editor

Shiows Toolbar =

Welcome to the Eclipse IDE for C/C

Open Perspective
Show View

Customize Perspeckive. .,
Save Perspective As...
Reset Perspective. ..
Close Perspective

Close all Perspectives

Mavigation

Figure 1.3.6 Setting up Eclipse configuration for the current workspace

! PyDev was created in 2003 by Alex Totic. Since 2005, the project has been run by Fabio Zadrozny. At that time PyDev had two parts:
Open Source - PyDev, and commercial - PyDev Extensions (remote debugger, code analysis, etc.). In 2008 PyDev Extensions were ac-
quired by Aptana. In 2009 Aptana "freed" PyDev Extensions, combining them with PyDev (version 1.5). In February 2011 Aptana was ac-
quired by Appcelerator. PyDev portal is still on the Aptana/Appcelerator servers and Fabio Zadrozny continuously watches over its devel-
opment.

Copyright Witold Jaworski, 2011.

16 Preparations

In the Preferences window expand the PyDev node and select the Interpreter - Python item (Figure 1.3.7):

(=163

-

& Preferences

General

CIC++

Help

InstalljUpdate

Jawva

PyDey
Builders

Debug

Editor

Interactive Console
Interpreter - Iran F‘\,-'I:I'V

Inkerpreter - Jyvthon
Interpreter - Python

Python Interpreters

Python interpreters (e.g.: python.exe)

Mame Location

Mew, ..

—¥| auto onFig

Select this
item....

... and press
this button

0-E- BB E-E

B Libraries | Farced Builtins | Predefined ﬁ Erwironment | @ String Substitution Yariables

Logging Syskem PYTHOMNPATH
PyLink

__N Fold
PyLinit e Faolder
Scripting PyDey T
Task Tags _

RunfDebug

Remove

Figure 1.3.7 Invoking the automatic configuration of the Python interpreter

Then just press the Auto Config button. If your Python folder is present in the PATH environment variable,
Eclipse will find and configure your interpreter (Figure 1.3.8):

& Preferences

| | python Interpreters -
g?cnifl Pwthon inkerpreters {e.g.: python.exe)
Help ame Location Hew. ..
InstallfUpdate = python 3.2 :\Pragram Files\PythonS2\python.exe
[=1- Do
Builders
De,t'"'g Configured Python
Editor interpreter
Interactive Console
Interpreter - Iron Python
Interpreter - Jython B Libraries |Fu:uru:eu:| Builtins | Predefined | B Environment | @ String Substitution Yariables
Interpreter - Python
Logging System PYTHONPATH
PeLink [= = Swstem libs
PyUInit & C\Program Files\Pythonsz
acripting PyDiesy EI Ci\Program Files\Python32\DLLs
Task Tags & C\Program Files\Pythanzilio
Run/Debug EI C:\Program FilesiPython32\liblsite-packages
Tasks
P T [Restu:ure Defaults] [Apply l
@ Press OK to confirm —>[oK RJ[Cancel]

Figure 1.3.8 Configured Python interpreter

If you have two different Python versions on your computer — PyDev will list them in a dialog window, asking to
select one. If PyDev displays a message that it cannot find any Python interpreter — perform the manual con-
figuration (see section 5.3, page 110).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 17

Chapter 2. Introduction to Eclipse

Our project starts here. It will be an adaptation of the Bevel modifier. You will learn more about this in the next
chapter. In this chapter, except the names, our project has nothing common with Blender, yet.

At the beginning, | want to show the Eclipse basics. | will do it on the example of a simple Python script, which
writes "Hello" in the console window. | assume that the reader has some experience in Python, and has already
used other IDEs. This is not a book about any of these issues. My goal here is to show how to perform in
Eclipse some basic steps, which are well known to every programmer.

Copyright Witold Jaworski, 2011.

18 Preparations

2.1 Creating a new project

Invoke the File 2New =>Project... command (Figure 2.1.1):

& CIC++ - Eclipse

Edit Source Refackor Mawigake Search Project Runm ‘Window Help

Ale+shift+r F Makefile Project with Existing Code
Cpen File. .. C++ Project
Close Chel-+ Project

Close Al carssneey |

_)
[H] save Chrl+S Convert ko a C/C4++ Project
|_—‘.§‘:| Save As, ., &% Source Folder
) Save Al ChH+Shift+5 (% Folder

Rewvert |£“‘|} Source File

Mave |E|> Header File
o £

Rename. .. Fz | 7 File: From Template
&) Refrash F5 (& Class
e
Convert Line Delimiters To [T Task

(= Print... Ctrl+P 7 other... Chrl+h

Switch Workspace
Restart

£y Import. ..
= Export...

Propetties Alk+Enker

Exxit

Figure 2.1.1 Opening a new project

It opens the New Project window. Expand the PyDev folder there and select the PyDev Project wizard (Figure
2.1.2):

& New Project

Select a wizard A

Wizards:

| kvpe Filker bexk

[#-[= General
B CiC++
- cvs
[
== PyDew

----- E PywDey Django Project

El PyDev Google App Engine Project
. < Select this

wizard

Figure 2.1.2 Selection of the appropriate project wizard

When the wizard is selected, press the Next button.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse

19

On the PyDev Project pane enter the Project name. Let’s start here right away a project that later will be used

to implement the script for Blender. Hence, | give it the name Bevel (Figure 2.1.3):

=

PyDev Project

Create a new Pydew Project,

ﬁ

Type the name of the project

BX

&

Project name:

| Bevel

Praoject contents:
Use default

Project bvpe
Choose the project bype

Python. (3 vthon () Iron Python

Select Python, an the grammar of
Grarmar Version | y 9

the 3.0 version |

30 4 v/
Interpreter
|Default w |

Click here o confiqure an inkerpreter nat listed

() Create 'src' Folder and add it ko the PYTHOMPATH? <—
i) ndd project directory ko the PYTHONPATH?

You can also choose this option —
to let PyDev to do automatically this
required step (see page 21)

(%) Don't configure PYTHOMPATH (ko be done manually laker on)

|Once it is set, press this button |“

@

[Finish RJ [Cancel

Figure 2.1.3 Filling the screen of PyDev Project pane

Set the Project type to Python and the Grammar Version to 3.0. Leave the rest of parameters unchanged and

click the Finish button.

The PyDev wizard will ask you about creating the new project perspective (Figure 2.1.4):

& Open Associated Perspective?

L. open this perspective now?

This kind of project is associaked with the PyDey perspective, Do wou wank to

&

|Turn this option off, to avoid this question in the future |

[]Remember rmy decision

es L\\s’—l | wo |

Figure 2.1.4 A question from the wizard.

(In Eclipse, the screen layout is called “project perspective”). Just confirm this question (Yes).

Copyright Witold Jaworski, 2011.

20 Preparations

Beware: if you forgot to configure the Python interpreter, the wizard would display an error and the Finish button

would be grayed out (Figure 2.1.5):

The wizard displays error messages

PyDev Project S~ in the window header

ﬂ Project interpreter nok specified

Grarmar Version

3.0

Interpreter

...

Please configure an interpreter in the related preferences before pro eedinv. If you forgot to set the Python
() Create 'src’ Folder and add it to the PYTHOMPATH? @ . interpreter, you can still do it
)) ~ - - - - |using this shortcut
() add project. directory ba the PYTHONPATH? .

... {As long as there is an error in the head-
'/ er, the Finish button is grayed out

@ o>)| cma]

Figure 2.1.5 The error reported by the wizard, when the Python interpreter is not set

When you have got such an error, use the shortcut displayed by the wizard in the window. It opens the
Preferences dialog and allows you to complete the missing configuration (see section 5.3). Once it is done, re-

turn to the wizard to create the new project.

The PyDev wizard creates in Eclipse an empty Python project (Figure 2.1.6):

& PyDev - Eclipse
File Edit Mavigate Search Project Pydevy Run Window Help

1 il e B <l IR MRS =Rk S RS R T I = : |ﬁ|PPyDeu|%CIC++|
= = — = X =
[2 pyDevPack 52 | 8 || 5= outline 52 g Welcome & g
& | = = " B = .
Sy CRaAE. e Selection of the project perspective.
+ ' . . .
Beve (Something like the screen layout in
Blender)
Project e
structure

fm Tutorials
'g‘h} Go through tutorials
Here you will see the structure of
the edited file (procedures, glob-
|al variables, classes, etc.)

The place for
script editor pane

[B% problems 52 @ -~ — O What's New
0 items Find out what is new
The plf_ice for the Description Resource
other windows
Workbench b
_ 3|[« IE

Figure 2.1.6 PyDev perspective of a new project

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 21

What you see is the default PyDev screen layout. In Eclipse,

just like in Blender, you can have many alternative "screens”. Click here, to L E|®

close this tab

They are called perspectives here. Every newly created project
contains the default PyDev perspective. When you try to debug it | & pyDey |% CiC++
your script for the first time, another perspective will be added
[] —
(Debug). ‘Welcome B
: & A

Let's start adaptation of the current perspective with removing Figure 2.1.7 Closing the Welcome tab.
the unnecessary Welcome pane (Figure 2.1.7):

Then add to this project a subfolder for the scripts: select the project folder, and from its context menu select the
New >Source Folder command (Figure 2.1.8):

& PyDev - Eclipse

File Edit Mavigate Search Project Pydew FRun Window Help
| m ® i BH-0-Q- i T |
[PyDev Pack 2 = Project_context menu = 512z outine 5
= =V s (click |2 to open) An outline is nok &
—+T
=
Mew 4 ™ Project...
Go Inko
| * File
=] Copy (% Folder
i'_'l-_
|z Paste
% Delete w
Mave, .. @ PyDev Module
Rename... 4 PyDev Package
= Other. . Chrlh

Figure 2.1.8 Adding a subfolder for the scripts

Type the subfolder Name on the wizard pane — let it be src (Figure 2.1.9):

Create a new Saurce Folder '

Project | Bewel | IBrnwse...]

Mame || srC

-------------------- Write here the name oOff-------------o--ommoomcooocoocoooc oo
this new folder

@ | Finish l:?” Cancel

Figure 2.1.9 Folder wizard pane

Finally, press the Finish button. The wizard will create the new subdirectory src in the project directory.

Copyright Witold Jaworski, 2011.

22 Preparations

We will create an empty script file, now. Expand the context menu of src folder, and invoke the New 2PyDev
Module command (Figure 2.1.10):

File Edit Mawigate Search Project Pydew Run Window Help

CH~ . B R AL NG = S A B e
£ PyDevPack &2 = B =g EE Cutline &3
The context menu of src -
= | An outling is nak ax
= folder (clictho open)
= = Bevel
ed s
| Mew 4 7 Project. ..
| File
= Capy ("% Folder
in
| |z Paste
3¢ Delete B PyDev Module
Miove 4 PyDev Package k
REname. .. =¥ Other... Chrl+

Figure 2.1.10 Invoking the new script (“module”) wizard

It will open another PyDev wizard window. Give this file a name suitable for the Blender add-on: mesh_bevel,
select the <Empty> item from the Template list (Figure 2.1.11):

Creake a new Python module

Source Folder | [Bevelfsrc | [Bru:uwse...]

Package | _——|Type the file name herepwse... |
/ (without the .py extension)

Mame || mesh_bevel |

Select this script
template

Madule: Class
Maodule: Main
Maodule: Unitkest
Maodule: Unitkest with setlp and kearDown

Template

Confid. ..

@ | Firish E[Cancel

Figure 2.1.11 PyDev module wizard window

Finally, press the Finish button.

If you have on your computer very restrictive firewall, you will receive now a request to open a TCP port. (I received this

comment from my reviewer). It is about accessing the 127.0.0.1 loopback. Anyway, | have not seen this myself, although my
firewall is not very permissive.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 23

This way PyDev has added an empty script file to our project. It contains just a header docstring comment, with
the creation date and the author name (Figure 2.1.12):

& PyDev - Bevel/src/mesh_bevel.py - Eclipse

File Edit Source Refactoring Mavigate Search Projd

HEBS @0 %

An asterisk indicates that
this file contains unsaved
changes

[E pyDevPack &2 = B [F] *mesh_bevel 2
IE' % :%:D = — rrr
= == Bevel

== src
@ mesh_bevel.py
- Python 3.2 (C\Progra

Figure 2.1.12 The new, empty script

Cregted on O07-06-2011

@author: wes79721] |

Help
= |

= O 5= outline 3

[type fkertext

M The user name, placed

in the script docstring

Summary

e In this section, we have created a hew Python project using the PyDev Project wizard (page 18);

e Name of the project is an arbitrary matter. In this example, | called it “Bevel” (page 19), because in the
further chapters of this book it will serve us to implement the Bevel command in Blender 2.5. For the same
reason | gave the script file the name appropriate for the Blender add-on: "mesh_bevel.py" (page 22).

e Eclipse requires in its project a special source folder (page 21) for the scripts. (You cannot place them in

the root directory);

e You can use several predefined templates for your script (page 22). For the Blender script | have just se-

lected the <Empty> template;

Copyright Witold Jaworski, 2011.

24 Preparations

2.2 Writing the simplest script

The script that we will write in this section will display the "Hello" text in the Python console. To see this result,
we need to add the panel with the Python console to our environment, because PyDev has not added it by de-
fault. To do this, click on the tab at the bottom of the screen (because there we will add the console). Then in-
voke the Window *Show View 2*Console command (Figure 2.2.1):

avigate Search Project Pydev Run RINGGGESE Help

T o : et Window
B-0- Q- g - . | @ pyDev |HEcicH+
Mew Editor _
= = O— . =
G 8 || g= B
[F] mesh_bevel 52 Open Perspective . o= Cutline &5
= L Shiow Yieta r ec Code Coverage =2 =
Cregted on QO7-06-2011 o T
Customize Perspective.., = Consale N AlE+Shift+, C :I
) X)
@author: Wa97F97e1 Save Perspective As. .. f:fl Error Log Ale+shife4+0, L
Reset Perspective... — Mavigat
e Clase P . E‘j avigatar ...then add the Console
nse Perspeckive 0% Outline R
Zl Al P ki
058 Al FErSpELLvES 2 Problems Alb+Shift+C, %
Mawvigation * [PyDev Package Explorer
. - Preferences Fla PyLnit
Click on this tab.. 4" Search AL+, 5
E Tasks
Other... Alt+ShiFE+G, O
(% Problems &2 = = 0
0 items
Description Resource Path Locat,.. Type

Figure 2.2.1 Adding the Console tab

By default, this output console shows the result of the script. Dynamic languages, like Python, offer also some-
thing like "interactive console". It runs the Python interactive interpreter, allowing you to check some expres-
sions while writing the script. So let's add it to our windows (Figure 2.2.2):

(2 Problems | Bl conscle &2 ERN: R 5-1— 08
PyDey Scripking EY1cvs T

| Z MNew Consaole View Pull down
this menu

Select the PyDev
console

() Console Far currently active editar

Jl@} Python console

Select this kind /
of the console

() Ivthon using ¥M running Eclipse console

| o E | cancel

Invoke the PyDev Console command from the pane menu, then select the Python console option in its dialog.

Figure 2.2.2 Switching to the interactive Python console

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 25

So here you have the panel with the Python interpreter, where you can check your code snippets (Figure 2.2.3):

(%! problems | Bl Consale 53 mE 5 #B-rs-—0
PyDey Console [0] ‘r

import sya; printi'%s 323' % [(gys.executable or sys.platform, svys|version) |
Cih\Program Files\PythoniZhpython.exe 3.2 (r3zZ:88445, Feh Z0 2011, 21pz29:02) [1

This menu allows you to switch
between the output console and
You can enter here any Python the interactive Python console

expression, to see how it works.

< b3
Figure 2.2.3 Interactive Python console

One of the useful PyDev features is the code autocompletion. It works both in the script editor window, and in
the interactive console (Figure 2.2.4):

@dict - ------------——--- R ([0 —> new empty dictionary
@ di AN dict{mapping) - = new dickionary initialized from a
s frﬂ s _ _p| mapping object's
0 divmodix, v (key, walue) pairs
@Dialect e dict(iterable) - = new dictionary initialized as if via:
€ dialag - | The list of the functions that E =k:[} .
- = . ot k, v in iterable: -
{51 Prob € dialog - j Match the entered prefix d[i<] —y |

dict(**kwargs]) - = neww dictionary initialized with the

PyDey C (L2 Dislog - msilb. _init__
name=value pairs

i é[ﬁl!a:ng-n;jlhb.schema il in the kewword argument list, For example: dice fo 1911
C:iWPr H_\Dla 0q - tkinker.commaondialog w (one=1, bwo=2) Tooltip with the function E02) [M3C
€ > description (docstring)
4 Press Ctl+Space For ternplates,

dil —_____|Start typing here...

Figure 2.2.4 Example of the code autocompletion

Autocompletion usually takes effect when you type dot after a name (for example, type "sys." in the console).
Such behavior does not bother writing of the normal code.

Well, let's finish this talk. Eclipse is a very rich environment, so | cannot describe all its functions here. Its time to
write our simplest script (Figure 2.2.5):

] mesh_bevel &2 = O 5= outline 53 = 0
FrTr laz :Ei :D: =

The simplest script

rrr

def main(): <
© = "Hello!"

printic)
Here you can see the first
mainEh code block — the main()
function

Figure 2.2.5 Our script — the first version, of course ©

Copyright Witold Jaworski, 2011.

26 Preparations

When the script is ready, highlight its file in the project explorer and from the Run menu invoke the Run
As 2Python Run command (Figure 2.2.6):

File Edit Source Refactoring Mavigate Search Project Pwdey Run Window Help

1. Select the : . R - .
script file - B RN AL NN = R =)
% PyDev Pack =8| e = B

SaEasiR— -

—+
Fun Configurations. .. ;
2 & Bevel Anrigur &t @ 2 Pythdg unit-test
Organize Favorites. ..
= s E -
E] mesh_bevel py def mainij :

o = "Hellaolw
print (o)

ER - Python 3.2 (CProgra
(= C:\Program Filesh P
B Systern Libs .

B Predefined Comple malnEh
B Forced builtins

2. Invoke this
command

Figure 2.2.6 Launching the script

PyDev will switch the console into the output mode, and you will see there the result of our script — the ,Hello!”
text (Figure 2.2.7):

[L Problems | & Console £2 Fy Py Lnit = % QD = UE|§IIIEI| ma E - L=ﬁ - =8
<kerminated > C:\Documents and Settings'l,w49?9?21'l,w-:urkspa-:e'l,Eievel'l,sru;mesh_l:uevel.p';.f ?
Hello! e

The output of this script|”

Here you can switch this
window back to the interac-
tive Python console

Figure 2.2.7 The result of our script — the text written in the output console

Summary

e We have added to our project new pane with the Python console (page 24);

e You have seen how the code autocompletion works, and how it displays the docstring of selected function
(in the tooltip — page 25);

e We have launched the simplest script and checked its result (page 26);

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 27

2.3 Debugging
To insert a breakpoint at appropriate script line, double-click (I:[) the grey bar at the left edge of the editor

window. Alternatively, you can also open at this point the context menu (with the |:[— Figure 2.3.1):

[F] mesh_bevel &3

Click [EI] on this £ mesh_bevel (2
band, to pull down ree
its context menu The simplest script
. 1 : ; ~def main|()] :
print (o)
Select this Inserted
command . breakpoint
Add Bookmark. .. ma1n|1|j| |
Add Task. ..
v Show CQuick, Diff Chel+ShifE+0

Shia Line Murnbers ittt
€ ,You can also turn on the line numbers of your,

icode, here. (Some programmers use this feature)

L e e e

E Freferences. ..

Figure 2.3.1 Adding a breakpoint

To open it, click the |:[at the line, where you want to insert the breakpoint. Invoke the Add Breakpoint com-

mand from there. Eclipse will mark this point with a green dot with a dash (Figure 2.3.1). (You can remove the
breakpoint in a similar way, double clicking |:[or using the context menu).

To run the script in the debugger, press the bug icon (©) on the toolbar (Figure 2.3.2):

File Edit Source Refactoring MNavigate Search Project Pydev Run Window Help

o - - — 2| - T .
- ‘ [3 : ﬁi‘%ﬁ Click here to start debugging. On the first

=87 run, it will display the warning about adding = H
[PyDev Pack i< %Em—beve' & the new Debug perspective to this project

1

—+* -
B g 3 U _
= T:F-;Bevel e szimplest scraipt

=7 src

E‘I mesh_bewvel py main i : _
R G R Sl Ell & Confirm Perspective Switch X

a2 C:\Program FilesiPe

= System Libs 9P This kind of launch is confiqured ta open the Debug perspective when it
B Predefined Comple \“‘-‘:/ suspends.
i Forced builtin This Debug perspective is designed to suppart application debuagging, I
incorparates views For displaying the debug stack, wariables and breakpoink
managernent,

Lo wou want to open this perspective now?

Select this Option, if you do FREI’I’IEI’I’I':IEI" iy decision
not want to confirm it every

time —/ I Yes D\\‘J [Mo

Figure 2.3.2 Launching a debug session

While launching the debugger, Eclipse always displays information about switching to the Debug perspective.
(On the first run, it will add this perspective to your project). Remember that you have to be in the Debug per-
spective, to be able to step through the script!

Copyright Witold Jaworski, 2011.

28 Preparations

Figure 2.3.3 shows the screen layout of the Debug perspective, and basic controls (and their hot keys) for de-
bugging. Note that the code execution has stopped at our breakpoint:

Resume || Terminate Step Into Step over EStep Return Pydew Run Window Help
F8 Ctr 7 . T
& -. = 5 | %5 Debug | @ PyDev
ﬁ?m% \ \ / / = O || 9= variables 53 g Breakpoints § = 8
] 3 R = i kB 5 -
= eF Bevel mesh_bevel.py [Python Run] Marme Yalue
Current stack of -
=@l mesh_bevel.py called functions @ Globals Global vatiables
=g MainThread - pid4744_seql
= main [I'I'IES"I_':IE"."ELD';.":S] Global and local variables:
= <module:> [mesh_bevel,py:8] preview or change =
= exedfile [pydey execfile.py:37] v
] mesh_bevel &2 = 0| o= outline 52 =0
- LA
FrEr . . - - laz :E: ‘U,, o
The simplest scrip The script line that will be
rre executed on the next step -
“def maini) : i) main
» c = "Hello!™
vw: e
The script execution has
mwaini) stopped here, at this breakpoint W
El cansole 52 *‘L_-.. Tasks [L Problems G Executables =8
mesh_bevel.py ", @ . UH|§II|EI| = B - L=

pydev debugger: warning: psyco not available for speedups (Che debugger will =&
pydev debugger: starting

Do not worry about this message that your PyDev
< lacks an optional component.
(It was in PyDev 1.6. In PyDev 2.1 it does not appear)

Figure 2.3.3 Screen layout of the Debug perspective

Green area on the source code marks the line to be executed. When you press now the key (Step over) —

you set the ¢ variable and move it to the next line (Figure 2.2.4):

fﬁ*Debug & = O || t9= variables 3 Dg Ereakpoints = B
IS e e = e =R -
= eF Bevel mesh_bevel.py [Python Run) ~ Mame Yalue
[y
=h@iF mesh_bevel.py @ Globals Global variables
=5 MainThread - pid4744_seql s sty Hello!
=W main [mesh_bevel.pyi6] b\
= zmodules [mesh_bevel.py:8] =
= exedfile [pydey execfile.pyi37] v Eclipse marks this way the
- occurrence (or the change) ofj
[F] mesh_bevel &2 8 || da variable! 8
= a n A
[] . . re 2 l :EI: i ,:
The samplest script
rrer
~ def main() : /_ This line has just been executed @ main
2 o o= "Helld¥n
» print ()
maini) d

Figure 2.3.4 The state after pressing the key (Step over)

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse 29

When you press the button again, the c string is “printed” and you leave the main() function (Figure 2.3.5):

ﬁ*Debug 3 = B | 9= variables 3 Za Breakpoints = 8
— _V,E = =
O (= T T @ = i 3F | Mame Yalue ~
= ep Bevel mesh_bevel,py [Python Run] A~ ¥ O Globals Global varisbles
= mesh_bevel.py +# @ _ builkins_ module: <module Builkins' (builk-in)
=g MainThread - pid4744_seql = doc__ str: inThe simplest scriptin
= <module> [gesh_bewvel.py:E] = _ Ffile__ str: CiiiDocuments and Settingst... ¥
= execfile [_pydev_execfile.py:37] A" | -
t
] mesh_bevel &2 We have just left main() function.| O || 5 outline &3 = O
. : Now we are in the main module.] 3 5
1:‘1?? simplest script Python keeps here some gIobaI“"" laz = ey -
variables (__<name>_)
def maini() :
K ¢ = "Hsllo!" () main
print (c)

% ma1n|1|]| This line has just been

executed — “printing” the

text on the output console !
El cansale 52 T [3_ Froblems | .3 Executablés = 8
mesh_bevel.py Cl ", @ % R S&E = B- -

Hellao! L

Figure 2.3.5 The state just after leaving the function

Notice that the top line (main() [mesh_bevel.py], visible on Figure 2.3.4) has been removed from the stack. Yet
the current line is still stuck on the call to this function in the main module (<module> [mesh_bevel.py]). In this
way the PyDev debugger indicates the end of the function. It was the last line of our script. If you press the

key again, you will find yourself in an internal PyDev module (Figure 2.3.6):

%% pebug &2 It is better to finish script| | ¢d= yarishles 52 By Breakpoints = "
execution with this
Resume command () k[-
Ok = LT T & || Mame yalue P
= ep Eevel mesh_bevel,py [Python Fun] A | [E @ Globals Global variables

Otherwise, the “step by ink: 1

step” execution W“_' bring str: "inThe simplest scriptin™nde. ..
= you to a PyDev internal

= mesh_bevel, py
= MainThread - pid4?4

= exechile |_pydev_execkile.py: 37] | (OSSN MoneType: None “'"
= run [pydewd. pyi925] ;
)
[F] mesh_bevel [F] pydev_execfile &2 : = O B= outline 52 =08
= ; ! R A
stream = Dp%(flle] ! - 1A H e
Lry: !
COntents = stresm.resd(] |
_) [l : < = g PyDev has opened
finally: | its source here!
stream.close () : Ay
v
B exed (compile (contents+ ™ n", file, 'exect), -

Figure 2.3.6 The process state after another Step over command (i.e. pressing the button again)

This helper script implements tracking of user’s programs. (Internally, PyDev uses its remote debugger here. We
also will use it for the Blender scripts). It is better to press the key (Resume) here, to finish the program.

Copyright Witold Jaworski, 2011.

30 Preparations

Figure 2.3.7 shows how the debugger screen looks like, when the script execution is completed:

- Y- 2R 2 RER R |35 Debug | € Pypex

' |

= yari a i = B
ﬁ‘« o — The debugger| | &= variables &3 '@ Breakpoints
commands are —-
/ inactive It is time to switch back into
% — iz = the basic PyDev perspective!

= éF <terminated =Bevel mesh_bewvel, py [Python Run]
«terminated =mesh_bevel py
m =rerminated, exit value: 1=mesh_bevel.py

\ The stack of the

completed process

[F] mesh_bevel [F] pydev_execfile 52 = 0| 5= outine 52 = OB
stresm = open(file) - o 1% = :nz =
Lry: ,
¥ _ 4—_’_’_,,—[Here you can also edit the
contents = stream.read() code. (It is useful for the
finally: quick corrections)

stream.close ()

exec (compile (contents+"in", file, fexec'), ;

< | >

El cansole 2 E, Tasks [L Problems G Executables =08

<terminated = mesh_bewvel,py % % Q:) EN EE|EIE| = B - -~
————— The result of the e —

Hellao! -

script execution

Figure 2.3.7 The state after the Resume command 1) — the process is completed

You can make minor corrections of the code in the Debug perspective, using the editor pane. However, when
you are going to make serious changes — switch to the PyDev perspective. You have more helper tools there
(Figure 2.3.8):

' |

= @B H-0-Q- B FEf %% Debug | PyDev |

o o~

% PyDev Package i3 = B || [F] mesh_bevel 3 =g EE Cutline &3 = B

E{}% :PF:D‘G" —irrr = laz:E::nzv

= 5 Bevel The simplest script | |
= sre o i
“def main() : @ main

EI mesh_bevel py
ER = Python 3.2 (C\Program F -
- C:\Program Files\Pyth
B Systen Libs]
B, Predefined Completion malj
B Forced builtins

c o= "Hellaol"
print (o)

Switch back to the Python interactive
console, using this menu

[L Problems | B consale &2 = B

<kerminaked= mesh_bewvel,py o
X % Q & | B 5B(E[E) =2 |-

pydew debugger: warning: payvoeo not availakhle for speed
pydev debugger: starting

Figure 2.3.8 Back to the PyDev perspective — for the further work on the code

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 2 Introduction to Eclipse

31

Summary

You have learned, how to set breakpoints in your code (page 27);

We have launched our script in the debugger (page 27). On the first run, PyDev debugger creates a new

Debug project perspective;

You have learned the basic debugger commands: Step Into (, Step Over), Resume (page

28);

We have looked at some helper debugger panes: Variables (page 28) and Stack (page 29);
After the last line of your script, PyDev debugger is still executing its internal code (page 29). Therefore it is

better at this point to Resume ([Fs]) its normal execution;

Copyright Witold Jaworski, 2011.

32 Creating the Blender Add-On

Creating the Blender Add-On

This is the main part of the book. | am describing here the creation of a Blender add-on. We will begin with the
typical script - a plain sequence of Blender commands that runs "from the beginning to the end" (Chapter 3).
Then we will adapt it for the required plugin interface (Chapter 4). As a result, we will obtain a ready to use add-
on that implements a new Blender command.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 33

Chapter 3. Basic Python Script

In this chapter, we will prepare a script that bevels selected edges of a mesh. | used this example to show in
practise all the details of developing Blender scripts in the Eclipse environment. You will also find here some
tips, how to solve typical problems that you encounter during this process. One of them is finding in the Blender
API the right class and operator that support the functionality we need! (I think that still nobody, except the few
Blender API developers, is familiar with the whole thing...).

Copyright Witold Jaworski, 2011.

34 Creating the Blender Add-On

3.1 The problem to solve

In Blender 2.49, pressing the m key opens the Specials menu. You can invoke the Bevel command from there,

1. Select the edges to
be beveled.

to chamfer the selected mesh edges (Figure 3.1.1):

2. Press , to

SPEBHIS pull down this
Subdivide |menu

Subdivide kulli
Subdivide Multi Fractal
Subdivide Smooth
herge

Remove Doubles

Hide

Reveal

Select Swap

Flip Mormals

3. Invoke
the Bevel
command

LE st osh | 4 Edit Mode = | |48 ¢

Rlend Frnm Shane

@ || [0 Globar 2]

Figure 3.1.1 Blender 2.49 — invoking the Bevel command

In effect, you will see the bevels along selected edges. To change their width, just drag the mouse. To obtain a
“rounded” bevel width value, hold the key down (Figure 3.1.2):

Move the mouse, to
change the bevel width

Mouse location when
the Bevel command
has been invoked

Current mouse
location

Current bevel width. (Hold down the
{14 Cuke key to change it by 0.01).

A Bevel - Dist: 0.0700, Mode: normal (MME o togglel)

Figure 3.1.2 Blender 2.49 — setting the bevel width

Notice, that it is not possible to enter the exact, numerical width during this operation. It was a minor drawback
of the Bevel command in Blender 2.49.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 35

Clicking the ends the Bevel operation. Where it is necessary, Blender adds to the result mesh additional

edges (all its faces must have no more than 4 vertices). (Figure 3.1.3):

Additional
edges

Figure 3.1.3 Blender 2.49 — result of the Bevel command

It's simple and quick, isn't it?

Blender 2.5 lacks such "destructive" Bevel command, so many users complain about it. It has only the Bevel
modifier, which chamfers the mesh in a "non-destructive" way (Figure 3.1.4). (This modifier was available also in
Blender 2.49):

1. Add the Bevel
modifier to the object

Add Modifier

v] [Bevel | [RAES

2. Switch it to
< Width:0.1000 * Weight, Largest.

We are in the i |
Edit Mode 3. Set up the o : .
bevel Width NOne _ Angle

Average Sharpest

Cube

¥ Edit Mode

Figure 3.1.4 Blender 2.57 — adding the Bevel modifier

To obtain the same effect in Blender 2.5, you have to add the Bevel modifier to the mesh object. Initially, it will
bevel all the edges of the mesh. However, if you switch the Limit Method to the Weight, Blender will display
another row of options on the modifier panel. Choose the Largest mode, from there. It will remove all the cham-
fers from the mesh, because initially all its edges have the Bevel Weight = 0. (This is the default value).

You can dynamically change the width of the Bevel modifier, dragging over the Width control the mouse with the
pressed (it is a slider). You may play around with it for a while. Set it at the end to the appropriate value

(for example — 0.1 Blender Units, as it is shown in Figure 3.1.4).

Copyright Witold Jaworski, 2011.

36 Creating the Blender Add-On

How to change the Bevel Weight values of the selected edges? Open the Toolbox (ﬂ) In the Mesh Options
panel, switch the Edge Select Mode into the Tag Bevel (Figure 3.1.5):

The edges with Bevel
Weight = 1 are marked

.
.]

in yellow
.. - 1

3. Click the edge

to bevel it

1. Turn on the Tag
Bevel mode

Tag Bevel =

2. Turn on the
edge mode

dit Mode 2 25 PN Global

Figure 3.1.5 Beveling selected edges with the Bevel modifier

Turn on the edge selection mode of the mesh (Figure 3.1.5). Holding down the key, click some edges with

the [:1Uz]. Blender will add a bevel under each of them (by clicking, you are flipping their Bevel Weght to 1.0).

e Notice that the edges with the bevel tag are marked yellow. This helps you to figure out what is currently
set on the mesh.

Using the Bevel modifier, you can have chamfered edges on the final shape, while the original cube mesh is not
altered. This effect is useful in many cases, because it lets you to avoid overcomplicated meshes. Therefore, the
beveling with the modifier is often referred as the "non-destructive" (in the opposite to the "destructive" Bevel
command, which we have used in Blender 2.49).

To obtain the “real” beveled edges in Blender 2.5, as in the “destructive” command from Blender 2.49, we have
to Apply the Bevel modifier (Figure 3.1.6):

Press this button, to
convert the effect of
the modifier into “real”
mesh

3

MNone Angle

Average Sharpest
Cube)

S L &> v L. Global # * |Y

Figure 3.1.6 Applying the modifier

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 37

When you press the Apply button (do it in the Object Mode!) the modifier will disappear, and its beveled edges
become the real part of the mesh. Now you can do with them what you want (Figure 3.1.7):

Additional edges —
(as in Figure 3.1.3)

Tag Bevel

Figure 3.1.7 Removing the bevel weights that are left after the modifier

On the end, you should click ([criHZIE]) the yellow edges that are left after this operation. It will remove their

bevel tags, making the mesh ready for the eventual another Bevel modifier (Figure 3.1.8):

Beveled mesh edges with
the Bevel Welght =

Tag Bevel

¥ Edit Mode

Figure 3.1.8 Blender 2.57 — result of the Bevel modifier application

You have to admit that there was a lot of "clicking". Although the Bevel modifier has also its advantages, many
Blender 2.5 users would like to have also a simple, “destructive" Bevel.

In this chapter, we will write a Blender script that will use the Bevel modifier to create the "destructive” version of

this operation. In general, it will repeat the sequence of steps that | did manually in this section. In the next
chapter, we will convert this script into a professional Blender add-on.

Copyright Witold Jaworski, 2011.

38 Creating the Blender Add-On

Summary

e Blender 2.5 lacks the “destructive” Bevel command. Such command was available in the previous Blender
version (2.49 — see page 34);

e You can obtain the same “destructive bevel”’ effect in Blender 2.5 by applying its Bevel modifier (page 35 -
37). To not repeat these operations manually, we will create a script that will execute them all at once. In
this way we will add to Blender 2.5 the missing functionality;

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 39

3.2 Adapting Eclipse to the Blender API

To write scripts for Blender in an easier way, we need to "teach" PyDev the Blender API. The code autocomple-
tion should be able to suggest object methods and fields, just as it does for the standard Python modules. For-
tunately, PyDev has such a possibility. We have just to provide it a kind of simplified Python file that contains
only declarations of the classes, their methods and properties. The very idea is similar to the header files used
in C/C++. To distinguish these "header files" from ordinary Python modules, PyDev requires them to have the
*.pypredef extension (a derivate from “Python predefinition”).

I modified Campbell Barton's script, which generates the Python APl documentation (the one that you can see
on the wiki.blender.org). Using it, | was able to create the appropriate *.pypredef files for the entire Blender API,
except the bge module. You can find them in the data that accompanies this book. Just download the
http://airplanes3d.net/downloads/pydev/pydev-blender.zip file and unzip it into the folder with Blender binaries
(Figure 3.2.1):

Adres ——_[]. CDocuments and Settingshwd 9797 21 Deskiop|pydey_blender.zip b a
Z...

Foldery b Mazma f Tvp Fozmi... Ma... Ro
= S Dysk lakalmy (200 ~ File Folder OKB 0OKBE
I $RECYCLE.BIN Plik. P 1KE HMie ZKB
Plik. P 1KE HNie 1 KB

4 () Documents and Settings

i 1
]
+ |) DRY ® _ Place the content of this packed

+ () Inkel file in the Blender folder
|3 MaOCache

= [Program Files The doc folder contains Blender API predefinition files, and
) 1E the script that generates them (see section 6.1, page 114).
[J) 7-Zip
3 Adobe Two additional files:
+ [J) ALLCony e pydev_debug.py is a helper module, used to debug
*) ALLPlay Blender scripts in Eclipse;
i g ware Foundation e Run.py is the template of a “stub script” (we will

1= 25? discuss it in detail in subsequent sections of this
o

¥) Blender-z, 4] chapter)

Figure 3.2.1 Unpacking additional files to the Blender folder

e Place both *.py files and doc folder in the directory that contains the blender.exe executable (Figure 3.2.2):

fdres ||| ©:\Program Files|Blender]‘ """"" N L a
Faldery : b8 \‘\Nazwa Rozmiat ~ Twp
= |} Blender E - .ﬂlswscale-ﬂ.dll 333 KE Application Exter
#0257 v .ﬂNEDmDQD.dII 53 KB Application Exter
=1) doc .’_;I:wrap_nal.dll 171 KE Application Exker
=3) python_api 2] el ol 11GKE Application Exter
£ pvpredef (%] kapyright. txt SKE Dokument bekste
I3 pypredef-tmp El FPL'"':E"'SE":X': JREp N _gén_eFaT, _th_e_ip_yae—v:c;e-bl]g-.Vp-y-.fﬁéqi
) Blender-2.49 E,l f‘?thﬂn"iEEnSE-th/ \can be placed in any directory listed;
% () blender-2.56 Ereadme.btml lin the sys path (see page 129) —!
) Blender-2.57 .’_a:lblender.exe.malnilzest l_check this on Linux or Mac. |
¥) Blender-2.573)Microsoft.vo90.CRT.manifest ~~~ 1KE Pk MANIFEST
|5 Cisco Systems SWlicrosaft, YL 90, OpenMP. mani. .. 1kB Plik MAMNIFEST

vdey_debug, py 2KE Flik Py
1KE Plik Py

+ () Common Files
| ComPlus Applications w

£ b £

Figure 3.2.2 The files required to follow this book

Copyright Witold Jaworski, 2011.

http://www.blender.org/documentation/250PythonDoc/index.html
http://airplanes3d.net/downloads/pydev/pydev-blender.zip

40 Creating the Blender Add-On

When the predefinition files are in place, we need to alter the project configuration. To do it, invoke the
Project 2Properties command (Figure 3.2.3):

& PyDev - Bevel/src/mesh_bevel.py - Eclipse |’._||’E|[z|
File Edit Source Refactoring Mavigate Search BEESEES Pydey Run Window Help

=i S L R ¥} . S —
T ighli T T Debu PyDey

- L. H'ghf"?(;'t the G- Close Project H % 2 |—P vDev |

roject folder
% pyDev PAckage Pro) = G:D }:c = H
== =
. O
=& e Build Warking Set p |t scrapt o-
EI mesh_bevel.py Clear. .

ER = Python 3.2 (C\Program FilesiPython32ip v Build Automatically

- C:\Program FilesiPython3z 11!
=i System Libs W

B4, Predefined Completions 2. Opgn its
B, Forced builtins rmin) Properties

Figure 3.2.3 Opening the project configuration window

It opens the project Properties window. On its left pane select the PyDev — PYTHONPATH section. It will display
several tabs on the right side. Select from them the External Libraries tab (Figure 3.2.4):

& Properties for Bevel

1. Select | PyDev - PYTHONPATH
this section

The final PYTHONPATH used for a launch is

defined here, joined with the paths defingd by the selected interpreter.

=~ Ly
rpreter/Gra [Source Fu:ulu:lers| &) External Libraries | @ String Substitution Yariables
PyDey - PYTHONPATH

Run/Debug Settings
Task Repaositary When using variables, the final paths resolved must be filesystem absolute,

WikiText

Excternal libraries (source Folders)zips/jars/eqgs) outside of the workspace,

hanges in external libraries are not monitored, so, the 'Force restore internal inf
shaould be used if an external ibrary changes.

Figure 3.2.4 Navigating to the PyDev - PYTHONPATH:External Libraries pane

Add here (Add source folder) the full path to the doc\python_api\pypredef folder (Figure 3.2.5):

(## Source Folders | %) External Libraries | @ String Substitution Yariables

External libraries (source Folders/zips)jars/eggs) outside of the workspace.

When using variables, the final paths resolved must be filesystem absolute, 1. Use this button to add the full

path to doc\python_api\pypredef

Changes in external libraries are not monitored, so, the 'Force péstore internal

should be used if an external library changes,

El CProgram FiIes'l,BIender'l,du:u:'l,pythnn_api'l,pyp?edef [add source Folder]

[&dd zip)jar/eqg]

[.ﬁ.dd based on variable]
[Remove]
2. Press this button, when the
‘/ library list has been changed
Force restare inkernal infu&
[Restnre DeFauIts] [apply]

Figure 3.2.5 PyDev PYTHONPATH configuration

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script

After every change made to PyDev PYTHONPATH, make sure that you have pressed the Force restore
internal info button (Figure 3.2.5). In response, Eclipse will display for a few seconds information in the status

bar about the progress of this processl.

From this moment, when you add to script appropriate import statement, PyDev will use in its autocompletion

the whole hierarchy of the Blender API (Figure 3.2.6):

- @& - B R I SR L R S Ff %% Debug | ¢ PyDev |
£ pyDev 22 = B |NE £ = H
= & | v e Add .thIS !mport st.ateme.nt, first! - &5
= Nothing will work without it! oo
2 == Bevel The simpleft scril o=
rre Then type a dot to open the
= ;;jt nash._bevel.p ’impnrt bpy list of these class members
=& Python 3.2 (C\Pr def main (| : !
= C:\Program Fi -:ul?ue = bpy.data. ; -
=Bl Swstem Libs print cube.name] O |gkhices V-
= C\Prograr _ 2 libraries
= CHPrograr main() © materials
= CPrograr & meshes
#= CPrograr £ metaballs
B, Predefined Co & node_groups
B Forced builkins G%
[3_ Problems | Bl consale 52 '? particle
PywDiey SCHpking '*-hlj} path_from_id{property) Z
< >
Prezz Cti+Space For ternplates,

Figure 3.2.6 Code autocompletion for the Blender API

The list of the class members appears after typing a dot. What's more, when you hold the mouse cursor for a

while over a method or an object name — PyDev will display its description in a tooltip (Figure 3.2.7)

c L

s ICICRE: BE A LR AL R=E

i %5 Debug |r3P—~;.=DE:v|

2 pyDew 02 = B [F] *mesh_bewel i = B8
- % _*'=ID‘ v rrEr =
—+l . . Oo—
F The samplest script S
= = Bevel - Hold the mouse cursor for a while
= sre _ over a method or property — and
[F] mesh_bevel.p lmport _hp? PyDev will display its description
=-€® Python 3.2 (CriPr def main (] : . ;
A C:\Pragram Fi cube = hpy.data.ckhlects["Cube™] |
= System Libs print {cube.name] [ghjects Found at: bpy i
= v
= Ci\Prograr main () obijects = tvpes, BlendDataObiects # (read only)
& C\Prograr I Press 'F2' For Focus
= C\Prograr _
&) Ci\Prograr cube = bpy.data.obhjects["Cube"]
B Predefined Cor print (cube ., name)
= Force{Use these shortcuts to go to the declaration of

Figure 3.2.7 Displaying

this item. This is useful to read the descriptions
of class properties.

objects Found at: by
objects = by, s.BIenEE\gtaObjects # (read only)

the descriptions

! This method of using *.pypredef files differs from the one that is described in the documentation on the www.pydev.org. The problem is

that following this "official" version (adding the folder to the Predefined Completions list) | could not obtain the proper code completion!

Copyright Witold Jaworski, 2011.

http://www.pydev.org/

42 Creating the Blender Add-On

The tooltip with method description disappears, when you move the mouse outside. You can also click on the
reference link, placed in its first line (see Figure 3.2.7). This link opens the source file on the line with appropri-
ate declaration (Figure 3.2.8):

[F] *mesh_bevel P bpy 52 = B

Greturns: BlendbataNodeTrees Collection of NodeTree -

r g

objects = tLypes.EBlendbataChjects
Frrobtect datablocks.
I Breturns: BlendDat3okbiects Collection of Object

ree Properties also have docstrings, which
are not displayed in the tooltips!

particles = types.BlendhataParticles
rrrpgrticle dataklocks.

Breturns: BlerdDatalParticles Collection of ParticleSet
W
L

£ >

Figure 3.2.8 Property declaration in the predefinition file (bpy.pypredef), opened using the tooltip reference link

From the PyDev point of view, such a declaration is located in the predefinition file (bpy.pypredef). That's why it
is opened as the source code. You can use this effect to read more about a particular class property (field). The
tooltip displays so called “documentation string” (docstring), placed just below the function (method) declaration.
Unfortunately, the Python standard does not provide docstrings for any kind of variables. (The class or object
field is for the Python interpreter just a variable). Thus, using the tooltip link to the declaration of the field is the
quickest way to read its description. (Most of the Blender API fields have docstrings).

By the way, if you have opened the bpy module, look at its structure in the Outline pane (Figure 3.2.9):

[F] *mesh_bewvel [F] bpy 52 = O 5% outline &2 o 1% H o, T T O
= FFF .S
&
= @ ElendData A
node groups = types.BlendDa F actions
FriNode group datablocks. oF armatures
FAreturrs: BlendlataNodeT oF brushas
L
oF cameras
oF curves
types.Blendhatadi: oF Filemath
Frrobiact dataklocks. d:Fu:unpts
2 Blendlataikhise d: .
The objects collection grease_pencil
is the field of the graups
o1 BlendData class] images
t
partic E_S T = oF is_dirky: -
Frrharticle datablocks. d:m All these fields are

declared as the class
F lamps properties — but it is
oF |attices |just a defect of the
F likraries | *-PyPredef declarations!

Breturns: BlendDatalarti

scenes = types.EBlendDbatalce) oF rmaterials
rrrScene dataklocks. F rmeches
Areturns: Blendlatafbcene: oF metaballs

oF node_groups

Tl ot Fn B tWﬂPH.H]PHﬂUHtHHH1v _r

£ * 4 >

Figure 3.2.9 A fragment of the Blender API structure, shown in the Outline panel

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 43

Notice that the structure of the bpy module, visible in the Outline pane, may be something of a “training aid”.
You can interactively “walk around” the whole Blender Python API, here. | would propose to start such a “trip”
with collapsing this tree to its root nodes (Figure 3.2.10):

IR @i O P %o [%5 Debug [pydev |
[F] *mesh_bevel [F] bpy 52 = O EE Cutline &4 8 la @ﬂ T =0
= FrrRlender ADT main modules # | 4 |
5
L 'U' conkexk
bpy.data is a field of the|- - -|- - Click here, to collapse the
bpy module, providing an Ds <:| [[lbpy structure
instance of the BlendData . @ tp
s
context/= typel€lass vP

= types.EBlendbata

zlaz=s ops:
FrrSncecigl class, created jus

Figure 3.2.10 The root structure of the Blender API

Here you can see the basic APl elements:

bpy.data provides access to the data of the current Blender file. Each of its fields is a collection of
one type of objects (scenes, objects, meshes, etc. — see Figure 3.2.9);

bpy.context provides access to the current Blender state: the active object, scene, current selection;

bpy.ops contains all Blender commands (operators). (In the Python API, each command is a
single method of this class);

bpy.types contains definitions of all classes that are used in the bpy.data, bpy.context and
bpy.ops structures;

When you look inside bpy.types, you will see an alphabetical list of all classes used in the API. An exception
from this order is the bpy_struct structure, located on the first place. This is the base class of all other API clas-
ses. Its methods and properties are always available in each Blender object (Figure 3.2.11):

G- B @ - R - Rl F R G S R e Y %5 Debug | ¢ PyDev |
[F] *mesh_bevel [F] bpy 2 = O 5= cutline &2 = B
E A = la :E: LY ." —
& T Ehpy struct | |
Frrfhuilt-in b3 class for 211 classes i
All other Blender API = type A
Hote that bpy.tvpdclasses inherit from|5® > .
reer bpy_struct its methods . Action
and properties @ Actiondckuator
def as pointeri(): .ﬁ.ctiDnCDnstraint
"rrReturns the memory address which ke 8 ActionFCurves
.ﬁ.ctiDnGrDup
Sreturns (int): int (memory addres: -':'-':tiC'I'IGVC'UF'S
Note: This is intended onlyv for adi 8l ActionPoseMarkers
reer 18| Actuator
@ ActuatorSensor
return int & Addan
18] addons

Figure 3.2.11 bpy_struct: the base class of all Blender API classes

Copyright Witold Jaworski, 2011.

44 Creating the Blender Add-On

Another thing is that bpy_struct is a “fake” class. In fact, it is a C-language structure that lies behind the API
implementation. That is why its methods may not be fully implemented in the derived classes. For example —
bpy_struct has a set of collection methods, like items(). All collection classes (for example — MeshEdges, the
collection of MeshEdge objects) reuse it and implement only their specific methods, like add() (Figure 3.2.12):

F] *mesh_bevel] bpy &2 = O/ E= outline 52 =8
=
a LA _—
I:E & lz :E': e D
class MeshEdges (types.bpy struct): L From_pydata e
rrrgpllection of mesh edges (&l Meshcolor

;

All the standard collection methods of| = @ MeshColorL ayer
/_ this class are derived from bpy_struct.|* @] MeshDeformMadifier
+

def @ (count=0] :‘ This defini?ion contains only its specific @ MeshEdge
P methods, like add(). = @ MeshEdges
Argruments: ':.'J} %
Goount (int): Number of vertices to = @ MeshFac
in [@, inf], foptiomal) &F area
&F Hide
rees oF index

oF material_jnde:x

An example of property, declared in the & normal
class MeshFace (types.hpy/str|predefinition file. . o F select
Pt Face in oa Mesh dohapoflts typeis assigned as its value (it is the oF use_smaoth

s autocompletion requirement) &F vertices

oF vertices_raw
area = float F center
rripaad only ares of the face &F edge_keys

Figure 3.2.12 Derived Blender API classes — the declaration of their methods and properties

Of course, all the classes that represent the single elements (like MeshEdge) have their items() method empty
(and also many other bpy_struct methods and properties).

The inheritance of the items() method in every Blender API collection class obscures the results of automatic
code completion. PyDev reads from the base class definition, that each of them contains just bpy_structs. For-
tunately, it is possible to “suggest” PyDev the appropriate type of a variable. Just put earlier in the code a line
that assigns to this variable the appropriate type (Figure 3.2.13):

T O= . =
*mesh_bevel & The “declaration”. It forces|~ || o Qutline & g
ree PyDev to assume that cube|g 12 % "o -
) is a bpy.types.Object 2 G
import bpy
def maini() :
’ cubhe = hpy.types.Object ‘ @ Encountered ") at line 8, column
cube = bpy.data.objects["Cuke™] = "'_- bpy
print {cube. iy main
Thanks to this & material_slats - u:InE!!:"|'u3|.-~~ll{|'|arru3J u:ul:_uject_u:lata]l: _
declaration ou & matrix basi #dd a new object ta the main database
h) Ob'y X makrix_basis Arquments:
can see the Object|= 7% & matrix_local @name {str): Mew name for the dakablock,
members on the & matrix world
autocompletion list fasks & mode B @object_data {ID): Object daka or Mone For an
=y Scripking © modifiers empty object,
& mation_path
O name @returns (types.Object): New object datablock.
@ newlname, object_data) wl ™
<' » rekurn bypes. Object

Figure 3.2.13 “Variable declaration” — a workaround of the Blender API collection type problem

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 45

In practice, you should add such "declaration line" only for a moment, when you need to use the automatic code
completion. Always place it in the code above the line where this variable receives its first "real" value. In this
way, your script will work correctly even if you forget to comment out this "declaration”.

Anyway - PyDev detect such lines, because it treats them as "unused variables". It marks them with appropriate
warning (Figure 3.2.14):

[F] *mesh_bevel &2 = 8 EE Cutline &5 = 8
+ 1% o e 7
import hpy | |

—def main|() :

i cube = bpy.types.Obhject ‘ 4= bpy

cubie = hpv.data.okhjects["Cukea'] @ mn&ir

print N\¢cube. name)

maini) L
If you have forgotten to comment
out this line — just check the
El conscle | ¥4 Tasks | [21 Problems 53 Problems tab! e ~ — 0O
0 errors, 1 warning, 0 others :
Description Resource : Path Locat... Twpe
B @ Warrings (1 item) I R R N
& Unused wariable: cube mesh_bevel . py [Bevelfsrc line 5 PyDew Probl. ..

Figure 3.2.14 PyDev warnings at each “type declaration” line

It is a good practice to look into to the Problems tab, from time to time. You will see there all the lines, which
you have forgotten to comment. Using this list, you will be able to fix them immediately.

To quickly figure out where in the entire API hierarchy is a specific field or method, highlight its name in the edi-
tor and open its context menu ([Z1L]). Invoke the Show In Outline from there. In response, PyDev will high-

light the appropriate element in the Outline pane (Figure 3.2.15):

5~ BEe & HB-0- 9 00 [%5 Debug | @ PyDev |
[F] *mesh_bewvel IF] bpy &2 = O EE Outline 57 =8
=
a LA _—
I:E [t 2 lz :E: ‘Dh
node groups = types.EBlendbatalodeTrees | |
't Node group datablocks. = BlendCata ~
Breturns: BlempdlataNodeTrees Collection &F actions
rer oF armatures B
&F brushes
4 = tvpes.ElendbataChjectz 0 lI?:Flz.fumneras
F curves
pllection o oF filepath
oF fonts

o arease_pendcil

Show In Al+Shift+ * m ﬁgmups
U Mavigakar mages

Zuk CEE o is_dirty

Copy Chlr % pyDev Package Explorer oF is_saved
E= Copy Context Qualified Mame £ Properties oF lamps

Paste CEElHY d:_ lattices

Figure 3.2.15 Finding a member in the hierarchy of bpy classes.

Copyright Witold Jaworski, 2011.

46 Creating the Blender Add-On

So far we have discussed the bpy.types branch, only. What about operators (bpy.ops)? There are plenty of
them! To not get lost among them right now, browse their modules (classes), first: action, anim, armature, ...
and so on. Let’s expand the bpy.ops.brush module (Figure 3.2.16):

: [~ BE ® HB-0- 4 0~ Fj %% Debug | @ PyDev
[F] *mesh_bevel F] bpy 52 = 8 EE Outline &3 = 8
E LA |
- laz :El: o7 =
£ def addi) :
Frrada brush by mode Evpe Groups (classes) of

Blender commands

o arE
= @ ops l

def curve preset shape='SMOOTH') : E @ ackion
Frr8et brush shape E @ anim
Arguments: E @ armature
@shape (str): im ['SHARE', 'SMOOTH', +-(8) boid

= @ brush

@ ackive_jndex_set
i add

i) curve_preset

Eltllimage tool set [RAsREE-FLlRE T Each operator is a—*@ image_tool_set

Set the image tool s:ngle method of its @. —

class = .
Arguments: '-.u} scale_size
Stool (str): in ['ODRAWN', "SOFTENT, ':u]' sculpt_tool_sef

@ wertex_kool_set
{4 weight_tool_set

Figure 3.2.16 Example of operator declaration

Each operator module (bpy.ops.brush, for example) is declared as a separate class, which has many methods.
Each of these methods is an operator. Note that you can always invoke every operator with no arguments —

because each of these

arguments is named and optional (i.e. has the default value).

It seems that this section has become an introduction to the Blender API architecture. To finish the topic started
on page 43, | have enumerated below the remaining APl modules. They are much smaller than the main mod-
ules (bpy.data, bpy.context, bpy.types, bpy.ops), because contain just a few classes and/or functions:

bpy.app

bpy.path

bpy.props

mathutils

bgl

blif

various information about the program itself: version number, the path to the executable
file, compiler flags, etc;

helper methods for working with paths and files (similar functionality like in the os.path
standard module);

function to create the new class properties, which Blender can display on the panels
(when it is needed). To distinguish them from the ordinary class properties (fields), they
are called "Blender custom properties" or just "custom properties”. We will use them in
the next chapter, in the operator class;

classes that represent some geometric and algebraic objects: Matrix (4x4), Euler,
Quaternion (rotation), Vector, Color. Contains also the geometry submodule with a
few helper functions (line intersection, ray and surface intersection, etc.);

functions that allow scripts to draw directly on the Blender windows (in fact, it contains
most of the OpenGL 1.0 methods);

functions that draw the texts on the Blender screen;

I know little about the two remaining modules: aud (Audio) and bge (Blender Game Engine), so | will not elabo-

rate about them.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script a7

Summary

The Python predefinition files (*.pypredef) allow to extend the scope of automatic code completion. The
predefinition files for nearly all Blender APl modules are included in the data accompanying this book (page
39);

To use the predefinition (*.pypredef) files, add their folder to the PYTHONPATH variable of the PyDev pro-
ject (page 40);

To let PyDev automatically complete Blender API expressions, add the “importy bpy” statement at the
beginning of your script (page 41);

The tooltips with detailed descriptions of methods can be used for the further exploration of The Blender
API (page 41);

The Python standard does not allow having docstrings about fields (class properties). The workaround for it
is to use the link to their declaration, placed by PyDev on the first line of each tooltip. It opens the predefini-
tion file in the Eclipse editor. You can read from there the description of the selected class field (page 42).
Browsing the structure of the bpy module in the Outliner pane helps you to learn the Blender API (page
44);

In case of the elements from a Blender API collection, use "variable declarations" (page 44) to obtain the
correct autocompletion;

Copyright Witold Jaworski, 2011.

48 Creating the Blender Add-On

3.3 Developing the core code

In the most of programming guides, you would immediately see the script code, in a section like this one. Their
authors often present the solution "as the rabbit from the hat", adding just some comments. This guide took a
different approach. | would like to show you here what takes place before writing the first script line: the search-
ing for the solution. This stage is even more important than the “pure” coding.

Let’'s prepare a Blender file for the script tests. | would propose to use for this the default cube, with the screen
layout set as shown in Figure 3.3.1:

A Blender® [C:\Documents and Settingsw497 9721 My DocumentsiBlenderi2. 5\Pythonirunpy. blend] @@@

Blender Render ¥

Datablocks

Qutliner

|
Image Editor —

Start: 1
End: 250

Figure 3.3.1 Screen layout for the “test environment”

Save this file on a disk, and then import it to the PyDev project (using the Import.. command — see details on
page 118), to have it at hand (Figure 3.3.2):

& PyDev - Bevelfsrc/mesh_bevel. py - Eclipse

File Edit Source FRefackoring Mavigate Search Projeck Pydev Run Window Help

8- @i B0 A G-
[% pyDev Package E 52 = O || [P] mesh_bevel 32] bpy

E <}-=4> :h# o —irrr
= 25 Bevel The simplest script

Just click to open it! |

= arc
@ mesh_bevel, py
== blender File

[= examples
— [¢ .

“def main|) :
cube = bpy.data.objects["Cube]
printmcul:ue.name]

Figure 3.3.2 The test Blender file, added to the Eclipse project

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 49

The goal of this section is to create a script code that will tag bevel (see page 36) the selected mesh edges.
Finding the way of adding the Bevel modifier using Python we will leave for later. For the purpose of the tests in
this section, simply add it manually (Figure 3.3.3):

o | B © view search Edit
25" Blendfile Data
 RNA ﬂ
Actions
& y]

e eV e mH
s &y (Jcube
¥ Modifiers
Add Modifier v

fAdd this modifier

g manually, for now . =] Select the Weight,

Largest options

S

[Apply] [Copy

(« width:01000) (@ Only Vertice
Lirnit Method: \4

]

blf, mathu

None Angle Weight
ce Imports: from mathutils import *; from ma

Sharpest
th import * =
s | [}5

Figure 3.3.3 Preparation of the test object

To look for the mesh objects responsible for the Bevel effect, use the Outliner editor. In the Datablocks mode, it
literally shows the entire contents of the file. This is a well-presented structure of bpy.data (Figure 3.3.4):

4>

@ O View Search Edit [Prllaas
i+ pMaterials
Meshes Switch to this
Metaballs mode
Mode Groups
= Objects
[il Camera
[J) Cube
L3‘ y [:J Lamp %

b ococoootfoo This is our object |=—

.-|--

Particles
SCenes
Screens

Scripts

Shape Keys

Sounds
Texts
Textures

Wector Fonts
Window Managers
= Waorlds

Select _Mesh

LETT/RIQNT AOME/E

Backspace
Enter
Ctrl+Space

Figure 3.3.4 Finding an object in the Outliner window (Datablocks mode)

Find there the Objects collection. Expand it, to see the individual objects that are present in this scene. One of
them — Cube — is the active one (it implies its name, displayed at the bottom of the 3D View editor).

Copyright Witold Jaworski, 2011.

50 Creating the Blender Add-On

Cube is our test object. You can find its mesh in the Data property (Figure 3.3.5):

Datablocks Datablocks

The mesh, assigned
to the object. You
can find in the Data

property

Figure 3.3.5 Internal structure of an object and its the Data field

(This mesh is also named Cube, but it could have any other name). Examine the mesh properties, to identify
the most important collections: Vertices, Edges, Faces. We are interested in the Edges (Figure 3.3.6):

=i

£]

Figure 3.3.6 Properties of a single mesh edge (an element of the Edges collection)

Let's expand one of its elements (a MeshEdge object). What we can see here? Something immediately strikes
the eye: the Bevel Weight field. Its current value is 0.0, which probably means no chamfer. So, if we change it to
1.0 (its maximum value), it will bevel this edge, right?

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 51

Let us verify this assumption (Figure 3.3.7):

Datablocks

Il | have changed this value
— and nothing happens?!

1 ™ 1.000, ’
[0.000 v

Weight used by the Bevel modifier

This description
confirms our
assumption!

+]
=P
1] gl
] o

Figure 3.3.7 An attempt to change manually the Bevel Weight value

Set the Bevel Weight of the first edge to 1.0 — and nothing happens! What is going on!? After all, you can read
from the tooltip of this property that it is the weight used by the Bevel modifier!

Maybe we are just looking from the wrong side? We are not sure where exactly on this mesh is the edge #0...
Let’s look at it from the other sides (Figure 3.3.8):

Datablocks

Maybe we have looked

on the wrong side? By the way, why is this edge marked

Unfortunately, there is as the selected one?

no bevel on the bottom! After all, there is nothing selected on
this mesh in the 3D View!

Figure 3.3.8 Closer examinations of the mesh data

There is no trace of the beveled edge, on all the sides. On the other hand, look carefully at the properties of this
edge #0. There is something wrong with them. Why the Select field is “checked”!? We just have viewed this
cube from all sides, and none of its edges is selected! It seems that the Outliner shows the wrong datal

Copyright Witold Jaworski, 2011.

52 Creating the Blender Add-On

Let’s try to switch into the Object Mode (Figure 3.3.9):

Datablocks

In the Object Mode, the
Outliner displays for the same
edge different (correct) values!

' Object Mode

Figure 3.3.9 The same properties, after switching from the Edit Mode to the Object Mode

It's interesting: values, displayed in the Outliner, have been changed. The edge #0 is not marked as selected (its
Select field is off). In addition, the current Bevel Weight value is 0.0. It seems that everything we have changed
in the Edit Mode has been silently ignored. Or perhaps we should try to do the same in this mode? Maybe it will
work in the Object Mode, since the Select value has become real?

In the Object Mode, | have changed the Bevel Weight to 1.0 — and it works as we assumed! (Figure 3.3.10):

Datablocks

The new value of
the Bevel Weight
is properly reflected
on the mesh!

This is the
edge #0

" A
¥ Object Mode v s

Figure 3.3.10 Changing the Bevel Weight in the Object Mode

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 53

e Current Blender version (2.58) ignores all changes made in the Edit Mode with a script or the Outliner
datablock controls. Everything works properly in the Object Mode. They have to fix it in Blender 2.6.

It seems that we have identified the property that should be changed by the script to tag bevel the selected edg-
es. Now we have to find their Python APl names (Outliner displays their “human readable” labels). It is very
simple, because Blender displays the “Python name” of each control in its tooltip (Figure 3.3.11):

Datablocks

When you hold the mouse for
a while over a field, you will
see its tooltip with a description

Object data
This is the name of this field Jalue: Cube
in the Blender Python API. nwthon: Object.dat

Figure 3.3.11 Identification of the Python API name doe a control form the Blender screen

There is only a problem with the collections, because they do not have any tooltips (Figure 3.3.12):

Datablocks

Unfortunately, Blender does not
display tooltips for collections!

Figure 3.3.12 The problem with the identification of collection names

Usually, collections in Python have the same name, but written in lower case, and each space is replaced with
the underscore. However, if you want to make sure, you can verify it in the so-called RNA (Figure 3.3.13):

1. Expand the
RNA of this object

3. Find the field of this class
that seems to fit, and expand its
2. Expand its Properties properties
(You have here just all
the fields of this object

class)

(The name of the Python API
collection is usually the same
as its label, but written in lower
case)

A 7 N T A R A 3 B 2 B 3 B B T A
e A A A A R A A T A A Y

) L]

+]

+ E

4. Check whether its label —
the RNA Name field — has
the name of the property you
are looking for

+]

(£

Figure 3.3.13 Verification of the Python API name in the RNA structure of the collection parent object

Copyright Witold Jaworski, 2011.

54 Creating the Blender Add-On

It looks that the "path" of the Python APl names to the mesh edges is: Object.data.edges. Let's check it at once
in the Blender Python Console (Figure 3.3.14):

Command History: Up/Down Arrow

Assign the active object (the test Cube) to

il the helper cube variable

==> cube = bpy.context.active object
=== cube.data. edges) Try to “print” in the console the first element (#0) of its edges

Python prints in response the string representation of the
edge #0 from Cube mesh. Therefore, this expression works
i I as expected.

Figure 3.3.14 Verification of the "name path" to a Blender API object

First, get from current context (bpy.context) a reference to the active_object (it is our Cube). Store it in helper
cube variable. Then check if the cube.data.edges collection has the edge #0 (we have changed it in the
Outliner). It has. So, let’s check the Bevel Weight of this edge (Figure 3.3.15):

=»> cube = bpy.context.active object

>»> cube.data.edges[0]
bpy.data.meshes["Cube"].edges[0]

cube.data.edges[8] .bevel weight
X

¥ Make sure that the value of this field is the expected one
s |

Figure 3.3.15 Verification of API field value

So far, everything works fine — the edge
#0 has its bevel _weigth = 1.0.

=»> Cube.data.edges[1]|.bevel weight = 1.8
=== | k

There is yet another test to do: use this
«1\‘9 Console | Autocomplete

Python expression to change the bevel

weight of another edge. Check, if you can bevel ®
another edge using simi-

To not type again the entire "path” to this {lar Python expression v
expression, just press the cursor key (E])

in the console. (The [al[¥] keys scroll

through the list of previously entered -
statements). Thus, in the command
prompt you will see the previously entered
expression. Just change the index of the

edge collection element from [0] to [1] and \
set its bevel_weight to 1.0 (Figure %

3.3.16).

When you execute this command, the

second edge of this cube will also become
beveled. So — it works! Figure 3.3.16 Verification of the bevel_weight influence on the mesh

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 55

Since we have found and verified the key Python statements, it's time to start writing our script. At the beginning,
add the import statement of bpy (Blender APl module). Then add the main procedure header (Figure 3.3.17):

] mesh_bevel &2 7] bpy =0
—iFETE .S
|Add this import statement, first! 3

The core kherel code
ree — Do not worry about this “not used”
_—— warning. It will disappear later on!

(i} import hbpv 4

~ . Begin a new procedure. Preferably -| -
def bevel(mesh): <«— from the declaration and a docstring
= T Barals selected edges of the mesh comment ©
Arcuments:

Bmesh (Mesh): @ Mesh object, with some edges selected

£

Figure 3.3.17 Beginning of the script: the import declaration and the main (bevel()) function header

In order to have proper code autocompletion, add the ,type declaration” for two variables (Figure 3.3.18):

. A H
import bpy =
= def berel (mesh) : Add here two ,type declarations” statements, to have
= mrrherels selected edges of/ the|proper code autocompletion for these local variables.
Arcuments: Minor problem: it will not work for the mesh variable, because it
- appears earlier as the function argument! | have not shown it here,
Bmesh (Mesh): a esh of but | have to change the name of this argument from mesh to _mesh,
[to have the mesh members autocompleted. | decided not to obscure
this illustration with such a trick.
mezh = bpv.typez.Mesh |
5] edge = bpy.types.MeshEdge 1 —
[}
[}
1] for edge in mesh. EI ;
© edge_face_count
© edge_face_count_dick T
Autocompletion at @ edge_keys
work! ~==-> @ edge_loops_from_edgesiedges)
@ edge_loops_from_Faces(faces, seams)
it} =does b

Figure 3.3.18 Forcing proper autocompletion for local variables with the “type declaration” statements

Add to the bevel() procedure a loop: for each selected edge (edge.select == True) tag bevel, setting its
edge.bevel_weight to 1.0 (Figure 3.3.19):

[

import bpvy

“ def herel (mesh) :
= MHMBerels selected edges of the meshk
Arquments:
Emeah (Mesh): 2 Mesh object, with some edoes selectedd

mesh = bpvy.types.Mesh

edge = bpvy.types.HHeshEdge Simple loop:
For each selected edge set its
for edge in mwesh.edges: Bevel Weight to 1.0

if edge.select:
edge.bevel weight = 1.0

Figure 3.3.19 The main loop of the bevel() function

Copyright Witold Jaworski, 2011.

56 Creating the Blender Add-On

That is all! After finishing this procedure, do not forget to comment out the ,type declaration” statements of its
local variables (see Figure 3.3.18). (Just comment out, do not to remove, because they still can be useful). At
the end of the module invoke the bevel() procedure for the active object (more precisely, for its mesh —
active_object.data: Figure 3.3.20). At this early stage of writing, we will not bother checking if the active object
has a mesh at all.

] *mesh_bevel &2 [P bpy -0
Frer |

The core bervel code
Frrr

import bpy

def bevel (mesh) :
frrferaels selected edges of the mesh
Argquments:
Emeahk (Mesh): 2 Mesh object, with some edoes selecterd

‘ <«———|Do not forget to comment out these lines!

for edge in mesh.edges:
1f edge.select:
edge.hevel weight = 1.0

/_llnvoking the bevel() procedure for the active object

%] ’bevelp?. context.active object. data]‘ I
There is no active_object property in the

bpy.types.Context declaration! (Alas!)

Figure 3.3.20 Invoking the main procedure (bevel()) and commenting out the ,type declarations”

Notice that the active_object property of the bpy.context object has the red underline (in PyDev it means a
possible error). It is strange, because we have already checked in the Python Console that such expression is
valid. Well, it is a problem with another “hard coded” Blender structure: bpy.Context. Depending on the circum-
stances of the call, this object can provide different properties! | am not able to recreate such behavior using the
declaration from the predefinition file. Here you can find the full list of its variants and their fields. | had to re-
move the code that generates the declaration of this Blender API fragment from the pypredef gen.py script,
because it did not work properlyl. Ultimately, the declaration of the bpy.types.Context class in the bpy.pypredef
file contains only the fields that are common for all variants of this context structure. Unfortunately, the
active_object field is not among them (there are contexts in which this property is not available). Of course, you
can just edit the bpy.pypredef file, adding to the types.Context declaration fields that you are missing.

On the other hand — this is just a dynamically interpreted script, not a source code to compile. Despite this er-
ror, we will run it without any problem. When we convert this code to an add-on, we will obtain the active object
in a different way — from the context reference, passed as the argument to our methods. Then PyDev will not
report an error in this case (because it will not recognize the type of this object).

! The original script, written by Campbell Barton, used a kind of ,hacker trick” here. It refers to the actual executable (Blender) as to a dy-
namically linked object (a *.dll in Windows, or shared object — *.so — in Unix/Linux) without the name. Then it reads directly from this code
object the definition of the context structures. Unfortunately, it seems that this method is not working properly in Windows, because my
adaptation attempts failed.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 3 Basic Python Script 57

Summary

We have prepared in Blender a test environment for our script — bevel.blend file. Its screen layout contains
useful tools for the code verification: the Outliner editor and the Blender Python Console (page 48);

It is convenient to place the test Blender file in the Eclipse project (page 48);

To inspect Blender data, use the Outliner in Datablocks mode (page 49);

To change the Blender data in the Outliner, do all the modifications in the Object Mode (page 51 - 52). In
current Blender version (2.5) the Outliner displays just a copy of the mesh data, in the Edit Mode. This
copy is created when you enter the Edit Mode (when the Outliner was already opened) or when you open
the Outliner. This copy is not updated, and its state may be inconsistent with the current state of the mesh.
All your changes made in the Outliner in the Edit Mode, are ignored. Blender developers ensure that this is
temporary situation. They will rewrite this fragment when the new implementation of the meshes (the
BMesh project) appears in the Blender 2.6 trunk;

You can read the Python API name of a control that is displayed on any Blender screen from its tooltip
(page 53);

To verify the Python API name of a collection, displayed in the Outliner, you have to look into the RNA of its
parent (page 53);

Always check in the Python Console whether your Python expression works as you expect (page 54);

The variants of the bpy.context object have more fields, than listed in its class declaration
(bpy.types.Context). This set depends on the Blender editor, in which the script was called (page 56);

Copyright Witold Jaworski, 2011.

58 Creating the Blender Add-On

3.4 Launching and debugging Blender scripts

In the previous section, we have written the first piece of the script that should work in Blender. You could launch
it in the “old good way”: loading this file into the Blender Text Editor and invoking the Run Script command. Only
that would be difficult to debug the script, this way. What's more, it brings some confusion about the source files.
(If you changed something in the Blender Text Editor, you would have to remember to save it back to disk).

| suggest another, more convenient solution. Open in the Blender Text Editor the Run.py file, which accompa-
nies this book (see page 39). | propose to place the Text Editor above the Python Console (Figure 3.4.1):

A Blender® [C:\Documents and Settingstw497 97 21workspacelBeveiblender filelbevel. blend]
_E! Default ar __ _-o'-" . Blender Render ¥ J

Data

¥ e " ® Object Mode

#script to run: 3 = : e
SCRIPT = "C:/Documents and Settings/wd979721/My Documents/Blender/2.5/Pytho| || kg 1) il K Al

#path to your urg.pythun.p{dev.debug* folder (it may have different wversion ﬁ EJJ]SCW
PYDEVD_PATH='C:/Program Files/Eclipse/plugins/org.python.pydev.debug 1.6.5.

¥ Render =%
[ij Image] [E Animation]
Display:

import pydev debug as pydev
pydev.debug {SCRIPT, PYDEVD PATH}

W2k © View Text Edit Format (= 152 L IE N Runseripe
o
d History: e i >
] ¥ Dimensions %
Render Presets — E

Figure 3.4.1 Adding the Run.py script to our Blender test file

Run.py is a “stub” script, containing just a few code lines. To adapt it for our project, update the values of its
SCRIPT and PYDEV_PATH constants (Figure 3.4.2):

__ GLEEEEE T Vel | Fa:b | Ob:d-3 | La:d | Mem:a-18m| Full path to
#script to run: our script
SCRIPT -| "C:/Documents and Settings/wd979721/workspace/Bevel/src/mesh bevel.py" |

#path to you *
PYDEVD PATH=|C:/Program Files/eclipse/plugins/o

configuratiaon)

rg.python. pydev.debug 2.1.0.2011052613/pysrc’
A

import pydev_debug as pydev

pydev. debug (SCRIPT, PYDEVD PATH,

Set trace to False if you

aﬁﬁé Jf’m?rée%ﬁ;; :rcnpt =) edipse ~ [hnrg.ecl?pse.p!étfnrm_ﬁt.6.2.\-’2[!1IDZIDIZDD
I corfiguration [Chorg.eclipse. uiintrg. universal_3.2,402.r36_v20100702
1) dropins | org.eclipse. ui.workbench . compatibilicy_3.2. 100, 120100
3 Features [CDorg.junic_3.8.2.v3_8_2_v20100427-1100
) p2 |3 org.python. pydevlast_2.1.0.2011052613
= 3 plugins [Chorg.python.pydeyl core_2.1.0,2011052613

Assign to PYDEV_PATH the full path topm.python.p: I org. python. pydev) customizations_2.1.0,201 1052613

PyDev module — pysrc. It is a subdirectory of pm.pythan. pt 0.20

I8 org. python. pydey.debug_2.1.0,2011052613
one of PyDev folders, .having suffix: . pythape: [org. python.pydey django_2. 1,
*.debug_<PyDev version>

L Fhon. [Chorg.python.pydev.help_2.1.0.2011052613

Figure 3.4.2 Adaptation of the Run.py code to this project

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 59

The SCRIPT constant should contain the full path to our script file, and the PYDEV_PATH — full path to the
PyDev directory that contains the pysrc subfolder. (This is a Python package with so called PyDev remote de-
bugger client — see pages 124 and 129 for more information).

Prepare a Blender model for this test. The code that we wrote has to bevel the selected edges of the mesh. So
far we have assumed that the object already has the Bevel modifier — so set it as in Figure 3.3.3 (page 49).
Mark on this test cube some edges, and then switch to the Object Mode (Figure 3.4.3):

UserPersp Liser Persp

{1} Cube (1} Cube

¥ Edit Mode 2 7 @ Object Mode

Figure 3.4.3 Preparation of the test object — selecting the edges to bevel

Insert a breakpoint in the script where you want to start debugging. In our case, we will add it to the beginning of
the code (Figure 3.4.4):

o

= O

The core bevel

Insertion of a breakpoint at the beginning of the
code will facilitate the use of the debugger

2 % import hpy

= def hevel (mesh) :
= WHNBerels selected edges of the meshk

Figure 3.4.4 Placing the breakpoint

Launch from Eclipse the process of the remote debugger server (more about that — page 124) (Figure 3.4.5):

Debug - Bevelfsrc/mesh_bevel. py - Eclipse Do all these operations in

File Edit Source Refactoring Mavigake Search Project Puwdew the Debug perspective
rHRe A @is-0-ive-o {5 | %5 Debug |
= Ty
:t;FDel:uug &8 IEINK O || (9= variables 53 -IBreakaintsw
I mEY T % £ | §
= e_F <kerminated =Bevel m mevel, o\ Pythion Rusd
b .lﬁ <terminated, evit = 150D Launch the process of
4 remote debugger server
/

/
= 7 - == e
B console &2 @ Tasl{ 7'5"/:“&'-”51 0 Executahleﬂ Remote debugger server “is listening” on the port 5678

Debug Server »
Debug Jerwver at port: 5675

r g (Some firewalls may ask you to accept the communication
through this port)

Figure 3.4.5 Launching the debug server process

Copyright Witold Jaworski, 2011.

60 Creating the Blender Add-On

When the debug server displays its message in the console, we will run our script (Figure 3.4.6):

@objectMode v @5 % 7S LA Global

#script to run: <
SCRIPT = "C:/Documents and Settings/wd979721/workspace/Bevel/src/mesh_beve

gegth to your nrg.pythnn.p{dev.dehug* folder (it may have different versio
I

EVD _PATH='C:/Program Files/eclipse/plugins/org.python.pydev.debug 2.1.8

import pydev_debug as pydev Press this
pydev.debug (SCRIPT, PYDEVD PATH, trace = True)| button

Cllrnpy SIS -
X

Figure 3.4.6 Launching the Blender script for the debugger

After a few seconds, the Eclipse debugger window "comes to life". In the editor window, PyDev will open the
helper pydev_debug.py module, and the code execution will stop on one of its lines (Figure 3.4.7):

1 | S B < = [| %5 Debug | € PyDev
%5 Debug &2 Press Resume, to continue to|| 0= Variables 2 - ®g Breakpoints =0
the next break point, we have i . —
placed in our script (see page 5 B
59) Mame Yalue A
= 2 Del:uuer\-'er [Pvthon Server] -~ @ Globals Global variables
= unknawn o pydey_path str: CfProgram Filesfeclipse/plugi. ..
=5 MainThread - pid2404_seql @ pydewvd rnodule: <module 'pyedesd Fram ', ..
debug [pydev_debug.py:30] ® script str: CifDocurnents and Settings)... %

<module [run.py:9] '\,_ Debugger will always break

. ! ¥ lllits execution on this line of
[F] mesh_bevel 7] bpy] pydev_debug E@: pydev_debug.py module = B
= : ~
v
> I if script file in sys.modules:
Lry:
sys.modules[script file] .unregister ()
EXCEpL:
pass
b
£ »

Figure 3.4.7 The first break of the execution — in the helper pydev_debug module

The pydev_debug.py is a small module, which | wrote to facilitate the tracking Python scripts in Blender. Notice,
that it is used in the Run.py template (see the code, shown on Figure 3.4.6). You can find the detailed descrip-
tion of its debug() function on page 129. In any case, the debugger will always stop at this point. Just use the
Resume (|F8]) command here to continue.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 61

When you press the Resume button, the script will be executed up to the line with the first breakpoint. (If there
were no such points in the code, it would run to the end). In our case, it will stop at the beginning of the file
where we have placed our breakpoint (see page 59 and Figure 3.4.10):

i 2P ® -0 e i | 35 Debug | €@ PyDev
ﬁ*Debug & = B || 6= variables 2 g Breakpoints = 8
Db T T _m = i= 3F | Mame Walue -
=5 MainThread - pidz404_seql Y @ Globals Global wariables
=8 - odule > [mesh_bevel,py:i4] @ _ buikins__ dict: {'bytearray" <class 'bytearr. ..
= debug [pydev_debug.py: 8] ® _ cached__ str: Ci/Documents and Settings). ..
= <zmodules [run.py:9] ® _doc_ str: \nThe core bevel codeln w

| Debug Server

= We have stopped in the mesh_bevel.py
= = I z module, at the breakpoint we have set = H
E mesh_bewvel 3 E bpy E] py.:dlaygjébug before.
LI - # [l

-,
-,

The core bevel coge”

rrr s

] import bpy r

def hevel (mesh) :

frrferels selected edges of the mesh =
Arcquments: b’
Figure 3.4.8 The first breakpoint, encountered after the Resume command
Step Over () the lines of the script main code until you reach the bevel() function call (Figure 3.4.9):
1= 2 F O ® B0 = [| %5 Debug | € PyDev
%% Debug &2 = O || t9= variables 2 Za Breakpoints = B
12 2| R = i= 3F | Mame Walue s
= MainThread - pid3std seql ”~ @ Globals Global variables
=8 ~module [mesh_bevel py: 18] @ _ buikins__ dict: {'bytearray’ <cdlass bytearr...
= debug [pydev_deb\g.py:38] ® _cached_ str: CfDocuments and Settings). ..
= zmadules [run.py: 9 ® _ doc_ stry AnThe core bevel codein "
| Debug Server s
= = = Use Step Into), =
[F] mesh_bevel %] bpy IF] pydev_deblto enter inside this m
procedure Al

if edge.select:
edge . hevel

3 bevel (bpy.context.active object.data)
\ A =
1
Do not worry about this PyDev b

“suggestion”(see page 56)

Figure 3.4.9 The next step — ,,enter” into the bevel() procedure

When the procedure call is highlighted, press the (Step Into) to track details of its execution.

Copyright Witold Jaworski, 2011.

62 Creating the Blender Add-On

Follow the loop iterations. Check that the code works as expected, i.e. it changes the bevel weight field to 1.0
only for the selected (edge.select = True) edges (Figure 3.4.8):

%5 Debug &2 = O || t9= variables 2 Za Breakpoints = B
e F R @ = i= 3F || Mame Yalue
= unknown A @ Globals clobal variables
=uf® MainThread - pid2404_seql 2 edge MeshEdge: <bpy_struck,
bevel [mesh_bevel.py:14] 2 mesh Mesh: <bpy_strock, Mes
<mody ¢ 3

<module= [run.p
L rakiim Sarar OK, we are inside the
— bevel() procedure -
iﬂ mesh_bewvel =3 iﬂ bpy iﬂ [.:nydev_del:uug |
= ! A

|
L]
|
_ v
> for edge in mesh.edges: I
if edge.select:
edge.bevel weight = 1.0

0
a bevel (bpy.context.active object.data) W
Figure 3.4.10 Tracking the loop code in the bevel() function
To keep track of the edge fields, use the Expressions panel (Figure 3.4.11 — see also page 126):
()= yariables | ®@ Breakpoints GH Expressions g@ You can track the Bevel Weight of = £
Name Value the edge object in the Expressions
S - pane.
=¢" "edge.select bool: True
¢ "edge.bevel_weight" -
5R Ay new axpranmion
Figure 3.4.11 Tracking the selected fields in the Expressions tab
When the procedure is over, press the Resume button to finish quickly this script (Figure 3.4.12):
%% Debug 2 The script has been terminated| | {= yariables | ¥ Breakpoin |05 Expressio 52 =0
(these buttons are grayed out)
v £ @ | & % <
T 00 = i= TF 0 Mame Walug Con
x n n .
=] } Debug Server [Python Server] =§'Y edge. select <errors)_during_kh
= unknown :5#“ "edge.bevel_weight" <error(s)_during_tk
oY 15in Thread - pid2404_seql = Add new expresnion
pl Debug Server The remote debugger server is still
listening (ready for the next debug
session)
>R
@ resh_bewel 20 E by ﬂ pydey_debug = 0O
Pl

Of course, you can also change the

for edge in mesh.edges: /_ script in this editor window

if edge.select:
edge.bevel weight = 1.0

Figure 3.4.12 The state of the environment after the last Resume command

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 63

If there were an error in this code, the debugger would also terminate this script. Then you can use the code
editor from the Debug perspective for the correction of minor bugs.

Fortunately, our code has occurred to be free of errors, so far. Let's have a look at the test cube (Figure 3.4.13):

2 B l o - and Se pvorkspaceiHeveliblencde etbevel. blenc
= - Default CE b Scene L] B
-
Farticles
SR +
N ® Screens
al Shape Keys
Selected edges have
been beveled & Taxts
2 Minimize the Text Editor, containing the
Run.py file. You will not change it any-
more, in this project. The only thing that
you need is the Run Script button,
= launching the specified script in the
On oo L oo PyDev debugger.
= Run.py CEI | b Run Script =
-
[Apply J C
(« width:01000) @
Lirnit Method:
B Autocomplete

Figure 3.4.13 The result of our script — properly beveled edges

It has been chamfered along the selected edges. It seems that our script is working properly.

To debug again the modified script, just save it and press the Run Script button on the Blender TextEditor
header. As long as the PyDev debugger server process is "listening"”, it automatically breaks the script execution
in the pydev_debug.py module. You will find yourself back in the place shown in Figure 3.4.7 (page 60). Thus,
the best practice is to keep the debug server running all the time. (If you inadvertently press the Blender Run
Script button when PyDev debug server is not running, Blender will become locked. In this state, you can only
close it using the Windows Task Manager. So it is better to close the Blender test file first, before closing Eclipse
with its PyDev debugger).

| propose to minimize the Text Editor that contains the Run.py stub, as it is shown in Figure 3.4.13, and save
this test Blender environment. (Blender always opens its files with preserved screen layout). Once modified,
Run.py will not be changed in this project anymore. Just leave the access to its Run Script button, to launch
easily the mesh_bevel.py script after each modification made in Eclipse. This makes the debugging more con-
venient.

Copyright Witold Jaworski, 2011.

64 Creating the Blender Add-On

Summary

e To run our script in the PyDev debugger, use the Run.py stub code. Place it in the Blender Text Editor.
Save this Blender file as the test environment for our script (page 58);

e Before the first run, modify the string constants in the Run.py code. Place there the path to your script (in
SCRIPT) and the path to the PyDev remote debugger client module (in PYDEV_PATH) (page 58);

e To start the first debug session, activate in Eclipse the PyDev Debug Server (page 59), then press the
Run Script button in Blender (page 60); To start every subsequent debug session just press the Run
Script button again;

e Do not press the Run Script button of the Run.py script when PyDev debug server is not running, because
it will lock Blender. In this state, you can only close it using the Windows task manager. Thus, once you
start the PyDev debug server, do not close it until you finish your session of work in Eclipse.

e The debugger always breaks the script execution at certain line of the helper pydev_debug.py module
(page 60). Therefore, it is a good idea to put at the beginning of our code a breakpoint (page 59). Once you
have it, you can quickly go to this line of your script using the Resume command ;

e To track changes of selected object properties, use the Expressions window (page 62);

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 65

35 Using Blender commands (operators)

Since the "nucleus" of our script works properly, it is time to add to it the other operations. Let’'s begin with
switching from the Edit Mode to the Object Mode. It should be invoked at the very beginning of the bevel() pro-
cedure. (To not surprise the user, on the end of this procedure we should switch it back to the Edit Mode).

How to do it with the Blender API? The case seems obvious: the context object (bpy.context) has the mode
field that contains the actual Blender mode. In the Object Mode it returns ‘OBJECT’, in the Edit Mode —
‘EDIT_MESH?’. | always check such things in the Blender Python Console (Figure 3.5.1):

| have read the current value, first
>=> bpy.context.mode<«—

EDIT MESH It would be the simplest way to change the
_ / Blender mode, but it is not possible!
= '0OBJECT'
a0 .}. ot T, e _|__'. l

all last):

3}9 Console Autocomplete |

Figure 3.5.1 An attempt to use the bpy.context.mode field to change the current Blender mode

So let's try to assign a new value to Context.mode — it should change the current Blender mode, right? Many
of the API fields work this way, but as you can see (Figure 3.5.1), not in this case! Context.mode is read only. It
only returns the current Blender state. We have to find the other way to do it in Python.

The whole Blender GUI uses exclusively the Python API. There must be a way to change the current mode in
Python. Do you have an idea, how to find it? The items from the Mode menu’ do not display any tooltips!

In such cases, use the Info area. You have seen its header all the time, because it plays the role of the main
Blender menu. Enlarge it, dragging this header down (Figure 3.5.2):

= -]] Here you can see the Python codel
of every Blender command that hasf
been invoked!

C - T (A e il Enlarge the Info area,
dragging its bottom border

bpy.ops.object.editmode toggle()
= - Drefault

Mode: X s r 3 J_F_F;-f‘"

‘f/ Weight Paint
B Texture Paint |I : r
i Vertex Paint

__then switch to}~ # Sculpt Mode

the Edit Mode g‘g] Edit Moda l\r
® Object Mode
@ © View Select Object [LJIT=ITNET

>

RCE) © view select mesh (ETITET

Figure 3.5.2 Checking in the Info area the Python API calls that correspond to the issued Blender commands

Now switch Blender from the Object Mode into Edit Mode. Do you see it? Above the Info header something has
appeared. It looks like a Python API call (Figure 3.5.2). This is the sought expression!

' | mean the menu button located on the 3D View editor header

Copyright Witold Jaworski, 2011.

66 Creating the Blender Add-On

Inside the Info area, Blender displays the Pythona code of every command that you have invoked from a menu
or a panel. It's a kind of the user activity log. You will also see in the Info warnings or errors from various Blender
components. Therefore, it is worth to look there, from time to time.

OK, but how can we switch back from the EditMode to the Object Mode? Let’s check in the Info...Yes, this is not
any mistake! To switch back, Blender uses the same method: bpy.ops.object.editmode_toggle()'.Now that we
know how to do this, let's modify the script accordingly (Figure 3.5.3):

import bpy

Place all assumptions about using this
procedure in its docstring comment!

def bevel (mesh) :
"""Bevels selected edges of the mesh
Arguments:

__

mrmirn

#mesh = bpy.types
_tedge.=_hpv.tLypes

for edge in mesh.edges:
if edge.select:

|Switching back to the Edit Mode

Figure 3.5.3 First addition — temporary switching from the Edit Mode to the Object Mode (to set the bevel weights in the mesh)

All right, we have already mastered the Blender mode changes. Let’s learn from the invaluable Info window,
which Blender APl method adds the Bevel modifier to an object (Figure 3.4.5):

Add Modifier v

| .
Expression that adds -
il the Bevel modifier 2] | Bevel | il fEE) "4-.?' 52

4 Width: 0.1000 *

Angle Weight

® Object Mode

Figure 3.5.4 Testing, which Blender API operator adds the Bevel modifier

It turns out that it is bpy.ops.object.modifier_add(). Just call this operator with the type argument = ‘BEVEL’.

! It looks that the Object Mode is a kind of the base mode in this program. The Blender API contains in the various bpy.ops modules meth-
ods that allow toggling between the Object Mode and any other mode: object.posemode_toggle(), paint.vertex_paint_toggle(),
paint.weight_paint_toggle(), paint.texture_paint_toggle(), sculpt.sculptmode_toggle(). The reviewer pointed me, that there is also a
universal method: bpy.ops.object. mode_set(mode). You can use it with appropriate argument, instead of the *_toggle() operators.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 67

Great! It is going well, so let's switch the modifier into the mode of operation which we need. The Info window
should show us corresponding Python expressions. So change in the Bevel modifier panel the Limit Metod to
the Weight, and the weight type — to the Largest. All right, we have set them, but... why there is nothing new, in
the Info window (Figure 3.5.5)?

We have changed these
options — and these expres-
sions have not appeared in
the Info area? Why?

L pefaut — ——

Add Modifier :
2) (oo) GIREED) (A [)

T A

4 Width: 0.1000 ¢

MNone Angle

Average Sharpest
® Object Mode Verage arpe

Figure 3.5.5 Missing expressions in the Info area

It occurs that the Info area does not show everything. No Blender command (i.e. operator) was called, when you
clicked on the panel options. It just changed the values of two fields in the modifier object.

What were these fields? You have to read it from their tooltips (Figure 3.5.6):

Add Modifier

... so Blender will display
its description and the
Angle Python API name

3

Sharpest

What edge weight to use for weighting & vertex

Figure 3.5.6 Reading the corresponding Python APl name

From the tooltip can be seen that all three values of the first row (None, Angle, Weight) reflect three possible
states of the BevelModifier.limit_method. The options from the second row (Average, Sharpest, Largest) cor-
respond to the three possible states of the BevelModifier.edge_weight_method (Figure 3.5.6).

e In Blender, the rows of alternate options often reflect the possible states of a single Python API field

Copyright Witold Jaworski, 2011.

68 Creating the Blender Add-On

All right. We already know the name of the fields that need to be changed, but how to reach the modifier object
through the data hierarchy? To find the answer to this question, review the data structure of our Cube object in
the Outliner (Figure 3.5.7):

The modifiers
collection belongs
to the object, not
to the mesh!

Figure 3.5.7 Finding the modifiers collection
You will find this modifier in the Cube object itself. It is an element from the Object.modifiers” collection. You

already know how to get the active object, so we have identified the whole ,name path” to these modifier fields.

It remains to ascertain the Python values, which we have to give to these attributes. Their Blender API descrip-
tions are very laconic, sometimes simply enumerate the possible values without any comment. Therefore, | al-
ways prefer to check their values in the Python console (Figure 3.5.8):

=== Cube.modifiers|" B

= cube.modifiers["Be

Figure 3.5.8 Checking the values of modifier object fields (in the Python Console)

! This placement means that can you use the same mesh in different objects, and each of them can have different set of modifiers. One of
them can “smooth” it with the Subdivision Surface modifier, another — bend it along a curve. In the result, you can create, from a single
mesh, many objects of completely different shape. It is worth to remember about such things - they are sometimes useful to enhance our
work on a model!

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 69

What operator corresponds to the Apply button on the modifier panel? You can also use the information from its
tooltip, here (Figure 3.5.9):

Add Modifier =

Yes, you can learn from this tooltip the name
v =le @ IEE X of the operator that corresponds to this Apply

button, but...

Apply rmodifier and remowve from the stack

Maone Angle

... in the Info area you can see it with
the argument values!

Figure 3.5.9 Comparing the information delivered by the Info window and the control tooltip

Yet when you perform this operation, you will see in the Info window the exact expression, with all the argument
values. It is very helpful. For example, in the Blender APl documentation you can read about the apply_as ar-
gument following description: ,How to apply the modifier to the geometry”. Guided by this hint, you
would not be able to discover that you have to set its value to ‘DATA’!

We have all the information, so we can extend our procedure now (Figure 3.5.10):

tmport bpy | have changed my mind about the type of the argument:

It is better to pass the whole Object, not just its Mesh! (The modifier is added to Object).

def bevel (obj)~%

"""Bevels selectdd edges of the mesh

Arguments:
@obj (Object): an object with a mesh.

It should have some edges selected

This function should be called in the Edit Mode, only!

mrrn

Add new Bevel modifier to the obj object. Set it
into appropriate mode

bpy.ops.object.editmode toggle ()

' bpy.ops.object.modifier add(type = 'BEVEL') i

i bevel = obj.modifiers [—1]1\ E

! bevel. limit method = 'WEIGHT' The new modifier is always appended to the end
bevel.edge weight method = 'LARGEST' of the modifiers collection

-------------------------- We have changed type of this procedure input,

D S b so this expression also has been updated
if edge.select:

edge.bevel weight = 1.0 |Applying the modifier.

...

..

Now we are passing to this procedure

bevel (bpy.contexthactive objectf—|justthe active_object

Figure 3.5.10 Script development: adding the Bevel modifier

Copyright Witold Jaworski, 2011.

70 Creating the Blender Add-On

As you can see from my explanations (Figure 3.5.10), during implementation of the modifier handling | have
decided to change the type of the bevel() input data from Mesh to Object. (Because modifiers belong to the
object, not the mesh). Such changes always require some attention. You have to do simultaneous changes in
many different places of the code. If you will forget about any of them then you will have an error, later on.

The code in Figure 3.5.10 has a flaw. It was written ,for the test data”. During the practical use, it may happen
that you will invoke it against an object that already contains other modifiers. For example — the Subsurf
smoothing (Figure 3.5.11);

Only the first modifier on this stack can be applied to
Add Modifier the mesh y_nth no chance for any distortion of all the
other modifiers

b O [subsut [(sl S]] (2] 7]

= = Mol e —| The new modifier is always added to the bottom of
4 EE‘El £ | this stack. We have to move our Bevel up!

Figure 3.5.11 The problem with the modifier position on the stack

The new modifier, as our Bevel, is always appended to the end of modifier list (stack). It has to be the first one,
to be applied to the mesh without any chance for an unwanted effect. Using the Info window you will quickly
find, that there is the bpy.ops.object.modifier_move_up() operator. We have to use this method in a loop,
moving our modifier up until it will become the first one (Figure 3.5.12):

import bpy | have added another argu-

__________ . ment: the bevel width
def bevel (obj, iwidthj: T

"nnpevels selected edges of the mesh

Arguments: |
@obj (Object): an objectiwith a mesh.
It shouldshave some edges selected
@width (float) :width of the bevel
This function should be called in the Edit Mode, only!

mrrn

bpy.ops.object.editmode toggle ()

bpy.ops.object.modifier add(type = 'BEVEL')
bevel = obj.modifiers[-1]

bevel.limit method = 'WEIGHT'
bevel.edge_weight method = 'LARGEST'

while obj.modifiers[0] != bevel:
bpy.ops.object.modifier move up (modifier = bevel.name)

for edge in obj.data.edges:
if edge.select:
edge.bevel weight = 1.0

The loop, which moves our
modifier to the top of the stack

bpy.ops.object.modifier apply(apply as = 'DATA', modifier = bevel.name)

bpy.ops.object.editmode toggle ()

Figure 3.5.12 Script development: enhancements in the modifier handling

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 71

On the end, | have added to the bevel() code second argument: the bevel width (see Figure 3.5.12). In the test
call to this procedure, it is set to 0.1 Blender units. Let us prepare the environment for testing, and we will be
ready for the next debug session (Figure 3.5.13):

Add Modifier

Figure 3.5.13 Preparation for another test

Select some edges of the mesh and press the Run Script button. On the first run after major changes, always
follow the execution of your script in the debugger. Fortunately, it has finished without errors. Figure 3.5.14 dis-
plays its result:

Add Modifier

Figure 3.5.14 The result of the script run

It looks as expected: the selected edges have been beveled. Yet it is worth to check the distribution of the Bevel
Weight values on these newly created edges (Figure 3.5.15):

All other edges have
Bevel Weight = 0

Figure 3.5.15 The propagation of the Bevel Weight values on the newly created edges

Copyright Witold Jaworski, 2011.

72 Creating the Blender Add-On

In the place of two originally selected edges the script has created some new ones (see Figure 3.5.14). All of
these newly created edges are selected, and most of them (but not all!) have a non-zero Bevel Weight. | have
not found any edge in this cube, which has Bevel Weight > 0 and is selected... So | assume that these new
edges "inherit" from the original ones their state, such as the selection and Bevel Weight. The latter can cause
unexpected results at the next Bevel operation. (It would modify not only the edges selected by the user, but
also the others, which inherited Bevel Weight in the previous operations). Therefore, our script should “clean up”
the mesh on the end of the bevel() procedure, clearing the bevel _weight values of the selected edges (Figure
3.5.16):

def bevel (obj, width):
"""Bevels selected edges of the mesh
Arguments:
@obj (Object): an object with a mesh.
It should have some edges selected
@width (float) :width of the bevel
This function should be called in the Edit Mode, only!

mrmrn

bpy.ops.object.editmode toggle ()

bpy.ops.object.modifier add(type = 'BEVEL')
bevel = obj.modifiers[-1]

bevel.limit method = 'WEIGHT'

bevel.edge weight method = 'LARGEST'
bevel.width = width

while obj.modifiers[0] != bevel:
bpy.ops.object.modifier move up (modifier = bevel.name)

for edge in obj.data.edges:
if edge.select:
edge.bevel weight = 1.0

bpy.ops.object.modifier apply(apply as = 'DATA', modifier = bevel.name)

for edge in obj.data.edges:
if edge.select:
edge.bevel weight = 0.0

4— Removing ,inherited” bevel weights
3 from the newly created edges

bpy.ops.object.editmode toggle ()

Figure 3.5.16 The ultimate version of the bevel() procedure

The bevel(object, width) procedure is ready. Notice that there is no input data validation, yet. We will
implement this part in the next chapter, where our script will become a Blender add-on.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 3 Basic Python Script 73

Summary

e You can trace the exact Python expressions that correspond to the Blender commands in the Info area
(page 66). Unfortunately, it shows the commands (operator) calls, only, You cannot trace there the changes
of the panel options (page 67);

e You can read from the last line of a control tooltip the corresponding name of the Python API field (property)
(page 67);

e ltis a good practice to check in the Blender Python Console the values of a Python API field, before using it
in the code (page 68);

e To use a Blender command (the operator) within your script, simply call corresponding method from the
bpy.ops module. The basic technique is to combine these methods with the code that checks the state of
the Blender data after such change. For example, the moving of newly added modifier to the beginning of
the modifier stack is implemented in this way (page 70);

Copyright Witold Jaworski, 2011.

74 Creating the Blender Add-On

Chapter 4. Converting the Script into Blender Add-On

Probably you know the Blender User Preferences window. | suppose that you already noticed the Add-Ons tab:

© Blender User, Preferences El@l&l

Interface Editing It Themes Systemn

A

Disabled deactivate this plugin
3D View

Add Curve

Add Mesh

Animation

Development

Game Engine
Import-Export

Object
Render
Rigging
Text Editor

Systern

Every Blender add-on is a special Python script. This window allows you to compose the “working set” of
plugins (add-ons), which you actually need. During its initialization, an add-on can add new elements to the user
interface: buttons, menu commands, and panels. In fact, the whole Blender Ul is written in Python, using the
same API methods that are available for the plugins.

In this chapter, | am showing how to convert our Blender script into a Blender plugin. This add-on will add to the
mesh Specials menu the “destructive” Bevel command.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 75

4.1 Adaptation of the script structure

So far, our script has been "linear” - it executes what was written in the main code, from the beginning to the
end. The Blender plugins work differently, as you will see it in this section. Therefore their code must have a
specific structure.

Let’s begin with the plugin “nameplate”. Each Blender add-on must contain a global variable bl_info. It is a dic-
tionary of strictly defined keys: ,,name”, ,,autor”, ,location”, etc. Blender uses this structure to display the in-
formation in the Add-Ons tab (Figure 4.1.1):

bl info = {

"name": "Bevel", Add Curve
"author": "Witold Jaworski'", z
"version": (1, 0, 0), TERIRIESH
"blender": (2, 5, 7), Animation
"api': 36147, Developmernt
"location'": "View3D>Edit Mode>Specials (W-key)", Game Engine
"category": "Mesh", € -----------——-—-—--- _ =
"description": "Bevels selected edges"”, \rport-Export
"warning": "Beta',

"Wiki url ": "",

"tracker url": ""

}

"author

"version"

2P0 a 5l

Figure 4.1.1 The bl_info structure and its pane in the User Preferences window

You can leave some of these keys with empty strings — for example the documentation and bug tracker
addresses (,,wiki_url”, ,,tracker_url”). Be careful with the ,,category” value: use here only the names that are
visible on the category list (in the Add-Ons tab). If you use anything that is not there — your add-on will be
visible in the All category, only.

This plugin has to expose our bevel() method as a new Blender command. To make this possible, we have to
embed our procedure in a simple operator class (Figure 4.1.2):

Here you determine the name of this operator for the

class Bevel (bpy.types.Operator): Blender API: bpy.ops.mesh.bevel(). Type this text in
""" Bevels selected edges the mesh''' |the lower case!

bl idname = "mesh.bevel"

bl label = "Bevel"€—7m—_ GUI command name (for the menu, or a button)

bl description = "Bevels selecteq edges"
Command description, displayed in the tooltip

def execute(self,context):

bevel (context.active object;0.1) ¢ [Let's assume a constant width: 0.1, for the test

Figure 4.1.2 The operator class, “wrapped around” the bevel() procedure.

| gave this class the Bevel name (call it as you wish). This new operator must inherit from the abstract
bpy.types.Operator class. Otherwise, it will not work properly.

Copyright Witold Jaworski, 2011.

76 Creating the Blender Add-On

Each operator must have two class fields: bl_idname and bl_label (Figure 4.1.2). | also suggest setting anoth-
er: bl_description. (If it is missing, Blender displays in the command tooltip the docstring comment you have
placed below the class header). At the beginning, our class will have just one method, with a strictly specified
name and parameter list: execute(self, context). Place inside it the call to the bevel() procedure, with the fixed
bevel width (just for the tests). At this stage, | still do not add any input data (context) validation.

To register in Blender all such classes from your module, you must add to the script two special functions, re-
sponsible for this operation. This code usually looks the same: at the beginning import two helper functions from
the bpy.utils module. Use them at the end of the script, in two methods that must have names: register() and
unregister() (Figure 4.1.3):

Import from bpy.utils these two
procedures

def register(): | — _
: register module(name) ¢ A typical piece of the code, that registers and

unregisters all the classes that inherit from the

'def unregister () : 3 bpy.types.Operator, bpy.types.Panel, or
| i ! bpy.types.Menu abstract classes.
; unregister module(name) !

This code was added as a precaution (during the

i,f o, . , / add-on initialization, the name of actual module
(1L name == mailn G 3 — name__—isnever =‘__main__)

Figure 4.1.3 The code that registers in the Blender environment the API classes, defined in the script.

Let's check how does such modified script work. Make sure, that the PyDev debug server is active. Prepare a
test object in Blender, and then press the Run Script button (Figure 4.1.4):

The mesh, prepared
for another test

Figure 4.1.4 Launching our add-on in the debugger.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 77

What about the result? It seems that the execution of this script has passed without any error, but the selected
edges of the mesh are not chamfered? To make sure, add a breakpoint to the Bevel.execute() method, and run
this script again. Nothing happens, and this breakpoint is never reached (Figure 4.1.5):

e e = W 8 int | & i =8
ﬁDebug 2 It seems that the script is finished... Variables | “lo Breakpoint | Expression S
=R -
00 == i= T || Mame Value
= F?-’ Debug Server [Pvthon Server] 57 Add new exprassion
= uriknown
p® MainThread - pids076_seql < .. because the debug server has
p| Debug Server % empty stack!
(It still is active and ready to start
a new Blender debug session) 5
[F] mesh_bevel 2 [F] pwdev_debug 2 = 15 oytlime 52 = 0O
. but the execute() method has
a LA -
zlazss Bevel (bpy.types.Operatygr) : not been called! 1 Z iz T
Frr Berels selected edgfs of the WeEsn
bl idname = "mesh.bew #i3 Head 3
bl lshel = "Bepel” o b Facer
bl dezcription = "Bdrels selected ads e
- HE# Imporks
777 4— bpy
idef execute (self, context) : 1 y ict dul st dule (b
o bevel jcontext.active ohject, 0. 1:| - reaster me LIE_,LII.'II’EQIS Sr_aduls Loy
—— ### Core operation
g || Do v
< > £ >

Figure 4.1.5 The state of the script after the first Resume) command

The point is that currently the main script code does not call the bevel() procedure. It just registers a new
Blender command (operator), under the name that you have assigned to the Bevel.bl_name field. In our case it
is just ,mesh.bevel” (see page 75, Figure 4.1.2). Check in the Python console, whether the
bpy.ops.mesh.bevel method exists (Figure 4.1.6):

=»> bpy.ops.mesh. beuel Type the name of this operator
_ T of the mest without the ,()"...

... and Python will display its
declaration and docstring!

Autocomplete

Figure 4.1.6 Checking results of the add-on registration

Now you can add this new operator to a Blender menu or a panel button. We will deal with the GUI integration
subject in the next section of this chapter. For now, just call this command “manually” — in the Python Console
(Figure 4.1.7):

>>> bpy ops.mesh. beuel

This time type the operator
name as the Python method —
with the ,,()” at the end

>>> bpy.ops.mesh.bevel ()

=] © Console [Autocomplete]

Figure 4.1.7 Call the operator...

Copyright Witold Jaworski, 2011.

78 Creating the Blender Add-On

The Blender window has become locked, and the Eclipse the PyDev debugger is activated. It waits at the

breakpoint, we have placed inside the execute() method (Figure 4.1.8):

ﬁ Debug 22 = O || 9= variables &2 ®g Breakpoint | £7 Expression 8
o _VE = o
(e] I T @ = i= T || Mame Yalue
=4 MainThread - pidS076_seql A FH @ Globals Global wariables
= execute [mesh_bevel.py:6E] + @ contesxt Context: <bpy_stroct, Co
= cal [ops.pv:179] + @ self Bevel: <bpy_struck, MESH
= <module= [<blender_console=:1] £ >
= runcode [code. py:90]
= runsource [code. py: 74] b
[F] mesh_bevel &2 [F] pydev_debug 7 = O 5= outline 2 =0
We can start tracking the a n_a -
class Bevel (bpy.types.Operator) : code from this point! | Z oo vou
Frr Berels selected edges of/the meskh
bl idname = "meshk.bevel” 423 Header 3
bl lshel = "Bersl" O Hl ifo
bl description = "Bervels selected edg -
- ###& Imporks
4— bpy

def execute (self, convext) :

4 reqister_module,unregister_module (bpey,
bevel (context.active object,0.1) d - ! d - (bpy

##F Care operation

»

Figure 4.1.8 ...and the debugger will stop its execution at your breakpoint

Do you see? We have simulated here what Blender will do with our operator. When you call the
bpy.ops.mesh.bevel() method (usually from a menu or a panel button), Blender will create a new instance of
the Bevel class. This Bevel object is used just to call its execute() method. After this call Blender releases (dis-
cards) the operator object. Such a “method of cooperation” (,do not call us, we will call you”) is typical for the all
event-driven graphical environments.

By the way: notice the arguments of this procedure, exposed in the Variables pane. Expand the context param-
eter to see what kind of information can be obtained from this object (Figure 4.1.9):

()= yarigbles &3 S Breakpoints | 55 Expressions =+ = Ve
Mame Yalue A
@ Globals Global variables
= @ rconbext Conkext: <bpy_struck, Context ab 0x01FSSD40 =

+ @ active_base OhbjectBase: <bpy_struct, ObjecktBase at 0x0C935485 =
* active_hone MoneType: Mone
+H @ active_ohiject Object: <bpy_struct, Object("Cube")=<——|In this mode, the context contains
* active_pose_bone MoneType: Mone not_ only _the reference to the
= active_object, but also two other
+ D area Area; <bpy_struct, Area at 0x0CE17A90> fields — edit_object and object.
+ @ bl_rna Context: <bpy_struct, StruckContext™ =
+ @ blend_data BlendData: =bpy_struct, BlendData at 0x0CE0GARD =
+ @ edit_object Chbject: <bpy_struck, Ohject("Cube™i= <
* editable_bones MoneType: Mone
* image_paint_ohject MoneType: Mone
* mode skr: EDIT_MESH
+ @ objeck Object: <bpy_struck, Object"Cube™i= <

Figure 4.1.9 Previewing the context of this call

The context structure may have different fields for different Blender windows. Examine it, because sometimes
you can discover something interesting. For example — what is the difference between the object and
edit_object fields? Unfortunately, you still can find nothing about them in the Blender API pages.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 4 Converting the Script into Blender Add-On 79

Let's examine in the Variables pane the self object. Notice, that the Bevel class has different base classes,
here. It has also a different value in the bl_idname field (Figure 4.1.10):

()= variables 57 B¢ Breakpoints | 7 Expressions =k E V=g
rarme YWalue
@ Globals Global variables
4 @ context Context: <bpy_struct, Context at Ox01FSS040:>
= @ self Bevels <bpy_struck, MESH_OT_bevel"MESH_OT_bewvel"1=
* bl_description str: Bevels selected edges
@ hl_idname Our operator object has a
> bi_lahel dif'ferenF bl_idname value,
] and a different base class!
2 bl_options
+ @ bl_rna Bevel: <bpw_struct, Struct{"MESH_OT_bevel") =
* cancel skri Traceback {mosk recent call last):\n File "Z:/Program Files/eclipse/plug. ..
* check stry Traceback {mosk recent call last):\n File "C:/Program Files/eclipse/plug. ..
* draw sty Traceback (mosk recent call last):\n File "C: fProgram Files/eclipse/plag. ..
* has_reporks bool: False
* jnvoke str: Traceback (mosk recent call lask):\n File "C: fProgram Files/eclipse/plg. ..
* |awouk MoneType: Mone
* modal skri Traceback {mosk recent call last):\n File "C:/Program Files/eclipse/plug. ..
® name skri Bevel
+ @ order list: ['_module_', ' doc_ ', 'bl_idname’, 'bl_label, 'bl_description’, 'exec...
* pall sty Traceback (mosk recent call last):\n File "C: fProgram Files/eclipse/plag. ..
+ @ properties MESH_OT_bevel: <bpy_struck, MESH_OT_bevel at 0x0CEAI0D0E =
+ @ rna_type MESH_OT_bevel: <bpy_struck, Skruck("MESH_OT_bewvel") =

str: Bewvel

Figure 4.1.10 The content of the operator class (self)

Calm down: it is normal. It seems that Blender guided by the first member of the bl _idname value
(,,mesh.bevel”), has created for our operator a class named MESH_OT_bevel. (The ,mesh.” prefix is replaced
in the class name with the ,MESH_OT_" string. Maybe the rule is that Blender replaces every dot (,.”) in the
operator symbol with ,_ OT_"?) If you are curious about this, examine the content of the bpy.types namespace
(typing dir(bpy.types) in the Python Console, for example). You will see plenty of undocumented classes, there!
Their names always contain ,_OT_”, , MT_”, or , PT_”. They are the operators, menus and panels defined in
the internal Blender GUI scripts!

By the way: look at the current state of the Python % Debug 77
script stack (Figure 4.1.11). Compare it with the | = £~ Debug Server [Pythan Server]
stack that is shown in Figure 3.4.7 (page 60), or in = """k”':"““_"'"

Figure 3.4.10 (page 62). of? MairThread

execute [me

Call to
Bevel.execute()
1

pidS076_se

sh_bewvel.py:63]

At the bottom of the stack, you can see the func- i —rall__[opspy:179] ‘

. . . L= amodules [<hlend le=:1]
tions of the Python Console (it seems that its large R mq"yﬁ'i‘"@’n”%;’@ ””” H

)))] ; runcode [code,pyi90 The line, typed in
part is also written in Python). Then there is a 3 runsource [code. py:74] the console
single line from a ,<blender console>" module.

push [code. py:245] ;
This is the invocation of our operator, which we execute [consale_python,py: 156]

have typed in the console. As you can see, it has = ewgrute [space_console.pyid7]
called a method from the ops.py Blender module, w Debug Serviy

The Python Console functions
which has created this instance of our Bevel class

and called its execute() method. Figure 4.1.11 The stack of the operator called from the console

Copyright Witold Jaworski, 2011.

80 Creating the Blender Add-On

When you finish the last step of the execute() function — the call to bevel() — the next Step Over () will
bring you to the Blender ops.py module (Figure 4.1.12):

Eﬂ mesh_bevel Eﬂ by Eﬂ Ops ih Eﬂ mesh_intersection =0
— - - s
if args:

C dict, C exec = class . parse args (args)
ret = op calli(self.idnamwe py(], C_dict, kw, C exec)
else:

» ret = op calli(self.idnawpe py(], None, kw)

if "FINTSHED' in ret and conte
__&lass . =scene update [cont

LWindow manager == wmni
tl

When you get an exception (a
runtime error) here ... w

3 b

Figure 4.1.12 The line of Blender internal script, that has called the Bevel.execute() method

We are here specifically to show you the behavior of the PyDev debugger in case of the Python error. When it
occurs, the green highlight of the current line disappears (Figure 4.1.13):

%% Debug i7 O | 6= varisble E— "ot will not finish, yet: you
e o 2 @ = i _‘TSD can check the state of the variables.

ainThread - pid5076_seql

[—=

i

B
CH
=

A Mame i/\é’ b

=8 -module [<blender_console:1]] ¥ @ globals Glabal variable:
= runcode [code. py:90] : H @ C Context: <bpy
= runsource [code. py: 74] : # @ Calor bypei <class'm
f push [code.py:245] : @ Euler bype: <class 'mw
E execute [console_python.pyi156] : F 5
= execute [space_rconsole.pyi97] WV . :
_ﬂ mesh_bewvel ﬂ bpy ﬁ] ops oA ﬁ] mesh_inktersection =0
— - - A
if args:
C diet, C exec = class . parse args(args)
ret = op_ecall (self.idname pyi(), C_dict, kw, C_exec)
el=e:
ret = op call (self.idname py(), None, kw)

¥ The green mark of the current de-

bugger line has disappeared!

e+ C:\Program Files\Blender\blender.exe

location:G:~PROGRA™1~Blender~2 .5 scripts modulessbpy~ops . py=179

In the Blender System Console PyDev debugger
displays the information about the line, but still
without the error description

Figure 4.1.13 The state of the debugger in the case of a script error

At the same time in the Blender System Console debugger prints a message about the script name and the line
number where the error has occurred. Despite this, the script is not completed, yet. In the Debug panel you still
can see the contents of the stack. In the Variables panel you can check the current status of the local and global
variables. Usually, careful examination of their contents will allow you to determine the cause of the problem.
One element is still missing among this information: the text of the error message! | confess that so far | have
not found the place in PyDev where it could be checked. When we do not know what is wrong, it is difficult to
find for the cause...

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 81

In any case, if you want to end up broken script - use the Resume command (. Then you will see the error

message (Figure 4.1.14):

venience Imports: from mathutils import *; from math import *
>>> bpy ops. mesh bevel(} .
or: or: calling class function: Function ULt exper a strin
in ("RUNNIMNG MODAL', "CAN(ED', SHED

scriptsiymodulesy,

Autocomplete

Figure 4.1.14 The full information about the runtime exception

Well, it's water over the dam. Now that we know what went wrong, we would like to examine the state of script
variables. Unfortunately, it is impossible at this moment, because the code execution already has been termi-
nated (see the stack shown in Figure 4.1.15). In practice, when an error occurs in the script for the first time, let
it terminate, to be able to see its full description. Using it, set a breakpoint on the line, at which it occurs. Then
run the script again to break its execution at this line. This time you will be able to analyze the script state, and
to come to the cause of the problem.

e When you invoke an operator from the Python Console, the eventual error information will appear below
your call, as in Figure 4.1.14. When you invoke it form a Blender GUI control — a menu or a button — it will
appear in the Blender System Console (see page 127, Figure 6.3.8).

In this particular case, such a complex analysis is not necessary. Blender has written clearly that it expects to
receive from a function the strictly defined value (it may mean the return value of the Bevel.execute() method).
Indeed, in a hurry while writing this code | have forgotten completely that the execute() function must return one
of the enumeration values, listed in this message. Usually it returns 'FINISHED'. Let's fix our script right away
(Figure 4.1.15):

%5 Debug 52 ~ O | 9= variable | ® Breakpa S5 Express 32 = 8
u Ii‘ = jﬁ> jt = ""E = e &% ~
= F,L‘- Debug Server [Pvthon Server] Marne Yalue
= kn X " " ;
Efm UnkEnown =p" sy, ewc_jinfol) <errors)_durin
B2 MainThread - pid5076_seql SR A new expression

p| Debug Server
£ >

Could not resolwve wariable

] *mesh_bevel &3 [P bpy -0

def execute(=el1f, cnntext] :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

returhn {'FINISHE }‘ The execute()_ fun(_:tion must
””””””””””””””””””” return a collection with at least

one strictly defined text value!

def register():
register wodule(name |

< b

Figure 4.1.15 A quick fix of the code — directly in the Debug perspective

Copyright Witold Jaworski, 2011.

82 Creating the Blender Add-On

Just save the modified script on the disk. Then press the Run Script button, to reload the add-on code in
Blender. Finally, invoke again this operator from the Python Console (Figure 4.1.16):

1. Press the Run Script
button to refresh our

add-on
A o

¥ Edit Mode s @3 % :E MG v ¢ [EE

Scri

Sl Ry [| Runscript | (8

, mathutil
mathutils import

2. Invoke this operator
>>> bpy.ops.mesh.bevel() again
{ "FINISHED" }

- .
I Its result — without

Hel= Autocon €rrors, this time

Figure 4.1.16 Another test of the fixed script

As you can see, after this correction our operator works properly. Now it can be added to the Specials menu
(see also page 34). | will show how to do it in the next section.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 83

Summary

Each add-on must contain the bl_info structure (page 75). This is its ,nameplate”, used by Blender to dis-
play the information in the User Preferences:Add-Ons tab;

A procedure that changes something in the Blender data (like our bevel()) must be converted into the
Blender operator. It involves creation of a class that derives from bpy.types.Operator. Place the call to the
updating procedure inside the execute() method of this new class (page 75);

Each add-on must implement the register() and unregister() script methods (page 76);

The Run Script button reloads the current version of the add-on script, only. (It calls the unregister()
method for the old version, and the register() method of the new one — see pages 82, 129);

When you run the add-on script, it will just register its presence in Blender (page 77). You still have to in-
voke its operator — for example, using the Python Console (pages 77 - 78). In response to this call, Blend-
er creates a new instance of the operator class, an invokes its execute() method;

The information about the environment of this call — current selection, active object, etc. — is passed to
the execute() function in the context argument (page 78);

In case of script runtime error (when a runtime exception has been thrown), PyDev debugger breaks the
execution (page 80). You can examine the state of the variables, at this moment. Unfortunately, | had never
found a place where you would have seen the error message. This text will be displayed in the console
when you let the script terminate (using the Resume command — page 81);

Copyright Witold Jaworski, 2011.

84 Creating the Blender Add-On

4.2 Adding the operator command to a Blender menu

Before we will add an operator to the menu, it is the final time to take care about the input data validation. To
work properly, the bevel () procedure requires two conditions:

1. the mesh is in the Edit Mode;

2. atleast one of its edges is selected;

Let's begin the implementation of the first condition. In fact, we are going to add our operator to the mesh
Specials menu, which is only available in the Edit Mode. Yet you never know whether someone in the future will
add your operator to another menu or panel. Therefore the poll() method is always worth adding to your opera-
tor class (Figure 4.2.1):

class Bevel (bpy.types.Operator) :
""" Bevels selected edges of the mesh'''

bl idname = "mesh.bevell Blender uses the poll() function to check, if this
— " " . .

bl_label = "Bevel operator is available for the current context. When

bl description =/"Bevels selected edges" |itreturns False — its control is grayed out

i@classmethod <
rdef poll(cls,context):

You have to declare poll() as the class method
(not the typical instance method)

return (context.mode == 'EDIT MESH')

e Function returns True when we are in the Edit

def execute (self,context): Mode. Thus, the Bevel command will be avail-
bevel (context.active object,0.1) able in this mode, only

return {'FINISHED'}

Figure 4.2.1 The basic ,,availability test” — implementation of the poll() function

Blender invokes this function to find out if "in the current situation” this command is available. The "current situa-
tion" is described by the context argument. It is an instance of the bpy.types.Context class (we have already
met this class — see pages 78, 56, 54). The poll() function may examine the context object and returns True,
when the operator is available. Otherwise, it returns False.

This is the place for ,general” tests, such as the condition #1. In our implementation the poll() function returns
True when the mesh is in the Edit Mode. (This is the meaning of the ‘EDIT_MESH’ mode value. If we were in
other edit mode — the armature, for example — the context.mode field would return a different value).

e Do not use in the poll() function any method that changes the Blender state (for example the current mode,
or the scene data). Any attempt to invoke it here will cause a script runtime error.

Notice the @classmethod expression before the header of the poll() function. (In the programmer’s jargon, it is
called a “decorator”). It declares that this is a class method — to run it, you do not need an object instance”.

e Always add the @classmethod “decorator” before the header of the poll() method! If you omit it, Blender
will never call this function.

By the way, have you noticed that the Blender API requires from your operator class to implement strictly de-
fined methods? It is a kind of a "contract” between your script and the Blender core system. You agree to pre-
pare a class with specific functions. Blender agrees to call them in the strictly defined circumstances.

! Probably it improves the performance of the Blender environment. The poll() methods are implemented by all GUI controls, and they are
called every time the Blender screen is refreshed. (The poll() functions of appropriate controls are called when the user do anything — pulls
down a menu, clicks a button, etc.). If poll() were an instance method, like execute(), Blender would every time create the instances of
control objects just to call their poll() methods, and then discard them immediately. | suppose that it would work more slowly, perhaps too
slowly. To call the class method you not need to create its instance (an object), and therefore this operation requires less CPU time.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 85

Such a list of contracted functions and properties is called "interface" in the object-oriented programming. To
help you a little in its implementation, Blender API delivers the base for your operator: the bpy.types.Operator®
class. In the object-oriented programming jargon, Operator is the so-called "abstract class". It just provides the
default, empty implementations of all methods required by the operator interface. Our operator class (Bevel)
inherits this default content from its base (bpy.types.Operator). That's why it is possible to implement (override,
in fact) in the Bevel just these Operator methods, which are specific for this derived class.

We will not check the condition #2 (,at least one of the mesh edges is selected”) in the poll() method. It is too
specific. It would be a very strange command, available only when something was selected on the mesh! Half of
the users would have no luck to see it in this state, and concluded that this add-on does not work. It is better to
make the Bevel command available in the Specials menu all the time. If the user invokes it without marking any
mesh edge before, it will display an appropriate message. In this way, she/he will know how to use it next time.

We could add such “advanced validation” to the Operator.execute() method. However, in certain situations, this
method may be called repeatedly, for the same context and with different other input parameters. (You'll find this
in the next section). Therefore, it is not good place for such a check, and certainly not to display the messages
for the user. There is a better place, in another method of this interface: Operator: invoke() (Figure 4.2.2):

class Bevel (bpy.types.Operator) :

""" Bevels selected edges of the mesh''' -
bl idname = "mesh.bevel" Blender calls the invoke() method, when opera-
bl label = "Bevel" tor has been invoked from a menu or a button.
- 3 3 — n n
bl _description = "Bevels selecfed edges” |y may also call the execute() method, later
(when user will change an operator parameter

@classmethod in the Tool Properties pane)
def poll(cls,context):

return (context.mode ==/'EDIT MESH') |we will not use the event in our script. Howev-

”” er, it is useful for so-called “modal operators”. |-
def invoke (self, context, event?y:

selected = 0
for edge in context.object.data.edges:
if edge.select:
selected += 1

. If nothing is selected
if selected > 0: — let ?he user to
return self.execute (context) know about it!

else:

self.report (type = 'ERROR', message = '"No edges selected")
return {'CANCELLED'}

<+——|Counting the selected
edges of the mesh

| noticed, that Blender interface code uses

Feved Contest opiocr/T) |Conexiobct nad of aeve ot i
return {'FINISHED'} ' P)

Figure 4.2.2 Additional validation of the input data — in the invoke() method

Blender expects that the invoke() function will return similar codes like the execute() method. Our
implementation of invoke() begins with the counting of the mesh selected edges. If there is none, it displays the
warning message and returns the 'CANCELLED' code. Otherwise, it calls the execute() method and returns its
result (FINISHED").

! In addition to the Operator interface, the Blender API contains two other interfaces (abstract classes): Menu and Panel. Obviously, they
serve to implement the user interface controls. You can find all of them in the bpy.types module, as well as in the PyDev autocompletion
suggestions. | wish the descriptions of these interfaces in the Blender documentation were better. Many of the details, which | am describing
here, are based on the various examples and my own observations, only!

Copyright Witold Jaworski, 2011.

86 Creating the Blender Add-On

The invoke() method receives, except the context argument, another object: event. This is the information
about the user interface “event” — mouse movement or keyboard key state change. It allows creating advanced
operators (see examples in the Operator class documentation). To check the event fields in PyDev debugger,
always use the Expressions window. Type there names of particular bpy.types.Event fields, for example
~event.type”, or ,event.value”. Any attempt to expand the fields of the event object in the Variables pane gener-
ates a Windows fault and terminates the Blender process!

I would like to draw your attention for a moment on the loops in Python. Writing the code shown in Figure 4.2.2
(page 85), | have tried to implement the loop that counts the selected edges in the most readable way. It was a
piece of code in the ,visual basic” programming style. Browsing the Python code examples on the Internet, you
might encounter the other, "single line" solutions for such an operation (Figure 4.2.3):

def invoke (self, context, event):

,,

if len(selected) > O0: selected — the
return self.execute (context) list of the selected

else: mesh edges
self.report(type = 'ERROR', message = '"No edges selected")

return { 'CANCELLED'}

Figure 4.2.3 Alternative way to count the selected edges in the invoke() procedure

This is an expression in the special ,python” (or maybe even the ,lisp”) style. The filter() function returns so
called iterator, which is converted by the list() function into a collection (list). Then you can check in the condi-
tional expression the length of this list. In the filter() function | have used the unnamed, temporary lambda
function. This lambda receives from the filter a single argument (e) — the element of the input collection.
Lambda function returns the value of its last expression (here: the sole expression) — that is True, when the e
edge is selected. (The detailed description of the standard filter() function you can find in the Python documen-
tation). The code readability depends on the advancement of the reader. For the experienced Python program-
mer the filter() expression with lambda function is as much readable, as the loop shown in Figure 4.2.2.

All right, our enhanced operator is ready to use. Yet how to add it to the Blender Specials menu (Figure 4.2.4)?

To open this menu in the Edit
Mode, press the key

Specials

Subdivide

Subdivide Smooth
Mert

Remove Doubles
Hide

Reveal

Select Inverse
Flip Normals
Smooth

Shade Smooth
Shade Flat

Blend From Shape

Shape Propagate

¥ Edit Mode

Figure 4.2.4 The Specials menu (in the mesh Edit Mode)

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.blender.org/documentation/blender_python_api_2_57_release/bpy.types.Operator.html

Chapter 4 Converting the Script into Blender Add-On 87

All Blender menus are created in the same way that is available for your add-on: using the Python API. You just
need to discover the name of the class that implements the Specials menu. Let's begin with finding the file that
should contain its code. Scripts that implement the entire Blender user interface can be found in
scripts\startup\bl_ui directory (Figure 4.2.5):

Z:1Program Files\Blenderi2. 57 scripkst startupibl_ui
A

. x Mazwa
= @ Blehder e ﬂpmperties_texture.py
B, __pycache__ B j properties_world, oy
= Chz57 B]space_ronsole.py N\ : : : —
Files with the properties* prefix in the

! ; space_dopesheet, . - .

D plugins P il T: P¥ name contain panels definitions (one file

I pythan o | S1p1E1EE L2 et per each tab: Textures, World, ...)

= :EJ scripks space_graph.py

' 03 addons space |mage By Files with the space* prefix in the name
! . i definitions (one file for
' i [addons_contrib space nglc : yﬁ each editor: View 3D, UV/Image, ...)

[}
v # C) modules

| # I2) presets space_nla.py

: =) startup space_node, pry

!) pyeache space_outliner. py
|

®) bl l:uperatcurs Space_sequencer.py

EEEEEEEEEEREEE

Look to this = b space_text.py
folder —/EJ __pycache__ space_time. py
) templates space_userpref, py
space_userpref_keymap.py — . .
1) doc =l space viewsdpy, | 4——|This is the file that we want. It defines
) Blender-2.49 _ Lf]spate Eb ol E% menus and headers of the View 3D
T blandar. Cf ¥| |#]space_viewad_tolSar.oy | editor
I >

Figure 4.2.5 Searching for the file with the View 3D menu definitions

Files with names starting with properties_* contain various panel classes for the Properties editor. Omit them, at
this moment. There are also other files, which names have following structure: space_<editor name>.py. They
contain definitions of the menus and headers for each Blender editor. The Specials menu belongs to the View
3D editor, so we should look for it inside the space_view3d.py file.

Open this file in your favorite “add hoc” text editor (it can be just standard Notepad, or popular Notepad++ —
what you like). Search its content for the “human” name of this menu - the "Specials" text (Figure 4.2.6):

| C:\Program Files\Blender\2.59\scripts\startup\bl_uilspace view3d.py - Notepad+ +

HHHHH BEGIN GPL LICENIE BLOCE f#HfHH ~
—
This ik X
modif] Find |Replace | Find in Files | Mark |
as p
4 of t Find what : | Speci.?ls w | I Find Mext, l
i n L3

) J [Caunt]
This In your favorite “ad hoc” text editor (Windows
buc Notepad, or Notepad++, like here), press - | Find &l in &l ©pened ‘
i HERCTI:I to open the Find dialog and search for the text of Documents

the menu header

GNT G Find &ll in Current
[] Match whole word only Docurnent
Tou s
alu::ngI
H# O Tee

Figure 4.2.6 Searching for the “Specials” phrase in the space_view3d.py file

Copyright Witold Jaworski, 2011.

88 Creating the Blender Add-On

Just remember that the same text may appear in many different menus! So is also in this case. First, | found the
menu class that implements Specials menu for the Object Mode (Figure 4.2.7):

B C:\Program Files\Blender\2.5%\scriptsistartupibl_uilspace_wiew3d.py - Notepad++ Z”E”X|

File Edit Search Wiew Encoding Language Settings Macro Run TextFr Plugins Window 7 ®
P
layout.operator({"object. losation clear™, text="Location™)
layout.operator{ "olhject.rotation clear™, tedt="Rotation™}
layout.operator{"ohject.scale clear™, tedt="3cale™)
layout.operator({"object.origin clear™, text="0rigin™)
Helass ?IEHSD_HTngjpgﬁ gpecials(bpy.types. Henu) :
bl label = "Speciéﬁéﬂl até
\\\\ This is a Specials menu
Bolassmethod N e - but for the Object Mode!
= def poll{cls, contexXt):
add more special types
= return context.object
b
< | >

Figure 4.2.7 One of the incorrect hits: similar menu for the other mode

How did | know it was not the menu that | was looking for? Although it had the proper header (the value of the
bl_label class field), it contained different items (the lines layout.operator(<operator name>, text = <display
name>)) than the menu shown in Figure 4.2.4!

After finding another definition of the Specials menu, | realized that part of their class name is the symbol of
Blender mode, in which they are used: ,object”, ,particle”... The third was the one | was looking for: ,edit_mesh”
(Figure 4.2.8):

B C:\Program Files\Blenderi2. 59\scriptsistartupibl uilspace wiew3d.py - Motepad++ |Z| |E| E'

File Edit Search Miew Encoding Language Setkings Macro Rum TextFr Plugins Window @ *
Fclass UIEHSD_HTJEﬁii;ﬁﬁéﬁlspecials{bpy.types.Henu}: e
bl label = "Specials” W
We were looking for this
= def draw{self, context): Specials menu

layout = zelf.layout
layout.operator _context = ' INVOEE REGICH WIN'

layout ..operator{ "mesh.subdivide™, Cext="Zubdivid="})

layout ..operator{ "mesh.subdivide™, text="Iubdivide Zmooth™) .smoothne
layout .operator{ "mezh.merge™, texXt="lerge. ..)

layout.operator("mesh.remove doubles")

layout .operator{ "mesh.hide™, text="Hid=") What a surprise! The

original bevel operator
commented out. It has
the same name as ours!

layout ..operator{ "mesh.reveal™, Lext="Eeveal™)
layout.operator("mesh.select inverse")

layout.operator({ "mesh.flip normals")

layout.operatord "mesh.vertices smooth™, tgxt="Smooth™)

54

[
|

Figure 4.2.8 Class that implements the Specials menu for the Edit Mode

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 89

When | know the menu class name, | can write the code that will add our operator to this menu (Figure 4.2.9):

This is a helper function. Invokes the same expression that we have seen in the
menu class code (see Figure 4.2.8)

This line forces Blender to use the
invoke() method of the operator,
instead of execute()

#-—— ### Register
def register():

--- >_ Adding and removing
def unregister (): . the menu command
Ebpy.types.VIEW3D MT edit mesh_specials.remove(menu_draw)i

‘unregister modu l'g'(fﬁéfdé""5 """""""""""""""""""""""""""""

Figure 4.2.9 Adding the operator command to the Specials menu

The first tests of the modified register() and uregister() methods are successful (Figure 4.2.10):

This is our operator,
prepended to the menu

Subdivide

2. Press Subdivi ! selected edges

1. Press Run Script, to
load the new version of our
add-on

¥ Edit Mode

Flip Normals

smooth

L [e | —
ity PR B
Figure 4.2.10 Checking the menu update

Another test — an “empty” invocation without any selected edges — gives the expected result (Figure 4.2.11):

s -'i'“)"(, Blender Render ¥ 1% | No edges selected

There is no selected edge to
bevel — so our script displays
a warning

()

¥ Edit Mode » ¥ PN Global

Figure 4.2.11 The result of invoking the Bevel command without any selected edges

Copyright Witold Jaworski, 2011.

90 Creating the Blender Add-On

However, when | selected some edges of the mesh and invoked again the Bevel command — | saw the same
warning, again! (Figure 4.2.12):

v 198 Mo edges selected

()

¥ Edit Mode Yy 25 PN Global

Figure 4.2.12 The result of invoking the Bevel command with some edges selected

| chattered so much on pages 84—=86 that | made a stupid mistake. | forgot about the thing, which | described
myself in the previous chapter (see pages 52, 53). Before you start counting the edges, switch Blender to the
Object Mode, and when it is done - back to the Edit Mode (Figure 4.2.13):

def invoke(self context event) :

'bpy ops. object editmode toggle() P
""""""""""""""""""""""""""""""" Switch Blender into the Object Mode

if len(selected) > O0: to count these edges properly
return self.execute (context)
else:
self.report (type='ERROR', message="No edges selected')
return { 'CANCELLED'}

Figure 4.2.13 Fix in the program: any reference to the mesh data must be performed in the Object Mode!

After this fix, invoke() finds the selected edges, and the command works properly (Figure 4.2.14):

2 Smooth

Flip Normals
¥ Edit Mode Smooth ¥ Edit Mode

Figure 4.2.14 Successful test of the fixed script

We have already achieved the effect similar to the Bevel command from Blender 2.49 (see page 34). Our Bevel
command lacks only the interactive ("dynamic") width changing. We will add this functionality in the next section.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 91

Summary

You can implement in your operator the optional poll() method. Blender uses this function to check, wheth-
er in the current context the command is still available (for example — active in the menu). It is intended for
the first, general tests, like the checking of the current mode (page 84);

The further, more detailed verification of input data should be implemented in another method: invoke()
(page 85). Blender calls this method when user invokes your operator from a menu (or presses a button).
This is controlled by appropriate field of the bpy.types.Menu class (see page 89). The same applies to the
panels. (I have not described panels here — the custom controls that derive from the bpy.types.Panel
class);

Add your operator to a Blender menu in the register() method, and remove in unregister() (page 89). To
write this fragment of code, we have to know the Python class name, that implements this particular Blend-
er menu;

You can find the class name of a Blender menu in the Python script files that define the Blender user inter-
face (pages 87 - 88);

Copyright Witold Jaworski, 2011.

92 Creating the Blender Add-On

4.3 Implementation of dynamic interaction with the user

In Blender 2.5, it is very simple to implement a dynamic interaction between your operator code and the user —
its certain scheme, at least. It allows the user to change continuously the operator parameters (using mouse, for
example), while Blender is updating the result on the screen.

First, add to the operator class the width parameter (as a class field). Create it, using appropriate function form
the bpy.props module (Figure 4.3.1):

import bpy

Import the class for the attribute
of Float type.

The remaining code of the script

Currently, there is still no description of these op-

class Bevel (bpy.types.Operator) :
""" Bevels selected edges of the megh'''
bl idname = "mesh.bevel"

tions in the official Blender APl documentation. This
combination | have copied from the code of Twisted
Torus add-on, or something like that.

bl label = "Bevel"
bl description = "Bevels selecte

; FloatProperty (name="Width'", description="Bevel width",
1 subtype = 'DISTANCE', default = 0.1, min = 0.0,
! 1, precision =

step =

,,

Creation of the width

@classmethod operator parameter

def poll(cls,context):
return (context.mode ==

'"EDIT MESH'")

def invoke (self, context, event):
bpy.ops.object.editmode toggle ()
selected = list(filter (lambda e:

bpy.ops.object.editmode toggle ()

e.select, context.object.data.edges))

if len(selected) > O0:
return self.execute (context)
else:
self.report (type='ERROR',
return { 'CANCELLED'}

message="No edges selected")

Using the width

def parameter value

execute (self,context) :

bevel(context.object,@elf.widthﬁ
return {'FINISHED'}

Figure 4.3.1 Changes in the class definition

The field created in this way, Blender will display as a control on the screen. The bpy.props module contains
classes to define the parameters (attributes) of four basic types: Bool*, Float*, Int*, String*. Additionally, there
are also one-dimensional arrays (the *Vector* classes) of each of these types. The bevel width is a Float value,
in our script. That's why | import from bpy.props just a single class — FloatProperty(). In its constructor, you
can set up all the properties of a GUI control: the label (name), tooltip description, default value, and the range.
The step parameter determines the value of increment/decrement, used when the user will click the arrows on
the control ends. The precision parameter determines the number of digits displayed in the control text area,
after the decimal dot.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 93

After adding the parameters (properties) to the operator class, you should add to it a field called bl_options.
(We have not used it, so far. It is an optional element of the operator interface). Assign to it a list of two values:
{'REGISTER’, ‘UNDO’} (Figure 4.3.1). You have to use exactly these values. If you assign it single value of
'REGISTER', or 'UNDOQ', you will not obtain the effect, which is shown in Figure 4.3.2:

after invoking

default width

Drag the mouse cursor
over the W.idth control,

(holding the down)...

Bewvel width
Wiath . and the bevel

width will changel~ [=
dynamically!

v TS

¥ Edit Mode ¥ Edit Mode

Figure 4.3.2 Dynamic change of the bevel width

Invoke our command (Specials »Bevel). It bevels the selected mesh edges as previously — using the default
width. Now press the ﬁ key, to open the Tool shelf (on the left side of the screen). In the Tool properties area
you can see a panel having the same name, as our operator (Bevel). Such panel contains the controls with the
parameters of the last used command — in our case it is the bevel Width. When you change its value here —
Blender will update immediately the result on the screen. When you drag the mouse cursor (holding the

down) over this control, the bevel width will change dynamically, like in Blender 2.49 (see page 34, Figure 3.1.2).

How does Blender get this effect from our srcript? To track down such interactive events, a simple printing of a
diagnostic text in the console is better suited than the debugger. Put for a moment apropriate print() statements
in both operator methods: invoke() and execute() (Figure 4.3.3):

def invoke (self, context, event):
_#input validation: are there any edges selected?
P print ("in invoke () ") !
“bpy.ops.object.editmo®s_toggle ()
selected = list(filter(la a e: e.select, context.object.data.edges))

bpy.ops.object.editmode togg

Diagnostic messages

if len(selected) > 0: (for the Blender System Console)
return self.execute (context)

else:
self.report (type='ERROR', messpage="No edges selected")
return { 'CANCELLED'}

print ("in execute(), width = %1.2f" % self.width)i

bevel (context.object, self.width)
return {'FINISHED'}

Figure 4.3.3 Adding the diagnostic messages (just for the test)

Copyright Witold Jaworski, 2011.

94 Creating the Blender Add-On

Reload this new add-on version, and invoke again the Specials ?Bevel command (Figure 4.3.4):

¥ Bevel = e C:\Program Files\Blenderiblender.exe
Width found bundled python: G:“\PROGRA™1%B1
read blend: C:xDocuments and Setting

I 1.hlend
(« 010 +))

2 o pydev debugger: warning: psyco not a
|| work corre it zlower>
in inuvokedC>
in execute<», width = B.18
z
i

The Specials ?Bevel command uses invoke(), which
calls execute(). They use default width (0.10)

Figure 4.3.4 The state immediately after the Specials ?Bevel command

Immediately after this invocation, two messages have appeared in the console (Figure 4.3.4). It seems that
Blender has called the invoke() method, which in turn (see Figure 4.3.1) has called execute() with the default
value of the width parameter.

Now let’s change the value of Bevel:Width field in the Tool Properties pane. | have pressed ten times the “arrow”
on its right side, increasing the bevel width from 0.1 to 0.2 (Figure 4.3.5):

work cufﬁectly, but a hit =lower>

e
¥ Bevel wﬁ in invoke{)
RHHE in executel), width A.18
Width in execute{, width
| in executel), width
— o in execute(),. width
ol in execute(), width
D@ in execute(),. width
in executel, width
executel?, width
executet}, width
executel), width
executet), width

7
)

Each change of the Width controls invokes the execute()

method, with appropriate width value.
I —

Figure 4.3.5 The state after increasing the Width value to 0.2 (in 10 steps)

Do you see? It seems that every time | have changed the value of the control, Blender has called Undo
command, and then simply has invoked the operator again. It uses directly its execute() method, calling it with
the width parameter set to the current value read from the Width control.

| suppose that Blender every time just invokes the operator method: bpy.ops.mesh.bevel(width = <current
control value>). Since you added the width parameter to the Bevel class, its method received an optional
argument with the same name (Figure 4.3.6):

e e

bpy.ops.mesh.bevel

B ls sele

This is our Bevel.width field (see page
92, and also page 77, Figure 4.1.6)

Figure 4.3.6 The named argument of the bpy.ops.mesh.bevel() method

| think that the roles of the invoke() and execute() procedures can be summarized as follows:

e The invoke() method is called when the operator is executed with the default parameters. The execute()
metod is called when operator is executed for a specific parameter values. (In the latter case they are
explicitly passed in the argument list of this call).

The choice of the operator methods called by the GUI can be controlled by certain flags (see page 89).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4 Converting the Script into Blender Add-On 95

There is still one detail that has to be added to this add-on. Our operator should "remember"” the last bevel
width. It will be used as the default value on the next use. This will greatly help the user.

How to implement it? Do not try to store anything in the Bevel object. It seems that Blender creates a new
instance of this class on each response to the Bevel command. That is why our operator object appears on
each call in its default state. The proper place to store such information between the subsequent calls is the
Blender data file. Most elements of the scene can be used as if they were Python dictionaries (Figure 4.3.7):

context.object["our data"] = 1.0
stored data = context.object["our data"]

Figure 4.3.7 Simplest example of storing information in the Blender data file

Be careful on retrieving such values. Usually you can not be sure if your data was previously placed there. It is
better to read them using the standard get() method, which does not generate an exception when the desired
element is missing. Here's modification, which allows our script to use the last bevel width as the default value
on the next invocation (Figure 4.3.8):

class Bevel (bpy.types.Operator) :
""" Bevels selected edges of the mesh'''

bl idname = "mesh.bevel"
bl label = "Bevel"
bl description = "Bevels selected edges"

bl options = {'REGISTER', 'UNDO'}

width = FloatProperty (name="WwWidth'", description="Bevel width",
subtype = 'DISTANCE', default = 0.1, min = 0.0,
step = 1, precision = 2)

¥Just for the code clarity: the

@classmethod name of the dictionary item

def poll(cls,context):
return (context.mode == 'EDIT MESH')

def invoke (self, context, event):

bpy.ops.object.editmode toggle ()
selected = list(filter(lambda e: e.select, context.object.data.edges))
bpy.ops.object.editmode_toggle () An attempt to read the

/ value (it may not exist, yet!)
if len(selected) > 0:

flast_width = context.scene.get(self.LAST_WIDTH_NAME,None)i

iif last width: i

: self.width = last width < If the last bevel width was

return self.execute (context)] stored: use it now!
else:

self.report (type='ERROR', message="No edges selected")

return { 'CANCELLED'}

Store the last used
def execute (self,context): / bevel width

-bevel (context.object,self.width) ______________ :
rcontext.scene[self.LAST WIDTH NAME] = self.width |

return {'FINISHED'}

Figure 4.3.8 Implementation of storing the last used width

Copyright Witold Jaworski, 2011.

96 Creating the Blender Add-On

Notice the script stores the last used bevel width in the current scene (context.scene), not in the modified ob-
ject or its mesh (Figure 4.3.8). If it placed the width in the current object, then you would obtain different default
values for various objects. | think it would be very confusing for the user. Thus, | prefer to store one width for all
calls — and the best place to keep such single value is the current scene. Preserving the current values of the
operator parameters in the Blender data has also another advantage that they are permanently stored when the
user saves the file.

There is yet another problem with such data, which may occur later. The same dictionary keys may be used in
the same scene by two different add-ons. In the result, one of them will overwrite the parameters of the other
one, and probably first of these scripts will end up with an error. Therefore, you should use the most specific,
long dictionary key names.

The storing of the last used width value was the final touch to this add-on. It is impossible to show this new
functionality on the pictures, so | exceptionally skipped them (©). Our mesh_bevel.py plugin is ready to use.
When you put this file among the other Blender plugins (in the scripts\addons directory), our Bevel will appear in
the User Properties window (Figure 4.3.9):

Interface Editing Input

Enabled
Disabled

3D View

Add Curve
Add Mesh
Animation
Developrment
Game Engine

Import-Export These buttons will appear, when you set
the ,wiki_url” and ,tracker_url” entries in
the bl_info add-on structure

Object

Render

Figure 4.3.9 Our Bevel add-on, displayed in the Add-Ons tab

You still have to publish the description of this add-on in the wiki.blender.org, and to open a bug tracker for the
eventual error notifications®. However, it is no longer the subject of this book. The full code of the script, we have
written here, you will find on page 131.

! In the result of such user feedback, | added further modifications to this script. One of them is the dynamic adaptation of the bevel width.
The last used value, as implemented in this book, did not fit well for large differences in the size of subsequent objects. To resolve this
problem, | added to the invoke() procedure a code that estimates the object size. On this basis, the program decides whether to ignore the
last used bevel value or to use the dynamically calculated default width. Such updates are natural to the development of each program. |
think that the implementation of this additional functionality would complicate our script, obscuring the main ideas presented in this book.

If you want to analyze the full code of the current "real" version of this mesh_bevel.py add-on, you can get it from the
http://airplanes3d.net/scripts-253 p.xml page.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://airplanes3d.net/scripts-253_p.xml

Chapter 4 Converting the Script into Blender Add-On 97

Summary

Create the operator parameters (properties) as a class fields, using appropriate function from the
bpy.props module (page 92). The fields, created in this way, become automatically the named arguments
of the operator method (from the bpy.ops namespace — see page 94);

To make your command interactive, just add to its operator class following line: bl options =
{"REGISTER’,’UNDO’}. When you invoke it, you will see in the Tool Properties sidebar a panel with all
command parameters, presented as the GUI controls. You can change them there using the keyboard or
the mouse. The results of these changes are dynamically updated on the screen, in the View 3D editor
(page 94);

Save the current parameter values in the current scene. You can use them as the defaults on the next in-
vocation of your command (page 95).

Copyright Witold Jaworski, 2011.

98 Appendices

Appendices

| have added to this book various optional materials. They can come in handy when you are not sure of some-
thing while reading the main text.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 5 Installation Details 99

Chapter 5. Installation Details

In this chapter, you will find the details of the Python, Eclipse and PyDev installation procedures. Study them just
in the case you stuck on some trifle.

Copyright Witold Jaworski, 2011.

100 Appendices

5.1 Details of Python installation

The installation of the external Python interpreter has not changed for many years, so let me show it using the
version 2.5.2, for which | already have prepared the illustrations.

Enter on the project page: www.python.org (Figure 5.1.1):

.Y
search E
ﬂ pgthon Advanced Search
Screen styles

normal* large userpref

ABOUT > Python Programming Language -- Official Website
NEWS i Python is a dynamic object-oriented B
DOCUMENTATION » pregramming language that can be used for
many kinds of software development. It offers A) R -
DOWNLOAD - ‘ strong support for integration with other
COMMUNITY B languages and tools, comes with extensive . -
. standard libraries, and can be learned in a few]
FELLBSTIE days. Many Python programmers report vl Wi hﬂ
CORE DEVELOPMENT # substantial preductivity gains and feel the _so does Rackspace, Industrial
S " m - Iang_uage encourages the development of higher nght and Magic. AstraZeneca,
D%WN?_OADe - quality, more maintainable code. Honeywell, and many others.

D) Python runs on Windows, Linux/Unix, Mac OS X,
» Documentation

» Windows Install (0S5/2, Amiga, Palm Handhelds, and Nokia mobile What they are saying...
" m’sl ”S, . gr phones. Python has also been ported to the Java TToTE
» Source Distribution and .NET virtual machines. =
#» Package Index
o "Journyx technology, from the
Python Jobs Python is distributed under an OSl-approved open e T e

source license that makes it free to use, even for

Donate to the PSF R R T SR the code that maintains our Web v
Figure 5.1.1 Main page of the Python project
Go to the DOWNLOAD section (Figure 5.1.2):
@ < A4 |I' python.org "| SN | | P |
77 Ulubione @ Downlaad Pythan '& A = | Lé.; * Strona~ Bezpieczeristwo » Marzedzia » I@Iv i
e —
Source Download Python 1
uln »
The current production versions are Python 2.7.1 and Python 3 2.
COMMUNITY p2d
FOUNDATION » Start with one of these versions for learning Python or if you want the most stability: they're
CORE DEVELOPMENT both considered stable production releases. [
|
Python Wiki If you don't know which version to use start with Python 2.7. ore existing third party
Python Insider Blog software is compatible with Python 2 than Python 3 right now.|
Python 2 or 37 | =
Help Maintain Website For the MD5 checksums and OpenPGP signatures. look at the detailed Python 2 7.1 page

Help Fund Python [
« Python 2.7 1 Windows Installer (Windows binary - does mot include source)

| Fepeen ,'E-j'&;:—' = Python 2.7.1 Windows X86-54 Installer (Windows AI‘«IDE:M'I Intel 54 / X86-64 binary [1]
-- does not include source) :
« Python 2.7.1 Mac OS X 32-bit i386/PPC Insfallgmtactiad o v 202 theanah 202107

o
yﬂ’ + Python 271 Mac 0S X 84-bit/32-bit xge=samze| POWnload the same Python
- Python 2.7.1 compressed source tarifall (for Lifversion that is used in Blender

MNon-English Resources

Release Schedule

Python 2.6.7rc1 =) .]
’ « Python 3.2 Windows x86 MSI Installer k‘u“v’lndows binary - does not include source)

« Python 3.2 Windows X86-64 M3 Installer (Windows AMDE4 [Intel 64 / X86-64 binary
[1] - does not include source)

niedziela, 15 maj
Python 3.2.1rc1

Figure 5.1.2 The download page, with various Python versions

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.python.org/

Chapter 5 Installation Details 101

Select the same Python version, which is used in your Blender. (If you cannot find the one with identical version
— select the closest one).

Click in the selected link and choose the Run option (Figure 5.1.3):

Pobieranie pliku - ostrzezenie o zabezpieczeniach

Czy chcesz uruchomié plik. czy zapisaé go?

o

EETCa W Rl - Ukonczono: 3% z python-2.5. 2.msi

Typ: Pakiet Instalatora
Od: v, python.org

e,) Internet Explorer - ostrzezenie o zabezpieczeniach
python-2.5.2.msi 2w
| (T I Nie mozna zweryfikowac wydawcy. Czy na pewno chcesz uruchomic to

Szacowany pozostaty cz| oprogramowanie?
moze byé potencialnie szkaddlivy Pabieranie da:
zaufania do Zrddba, nie uruchamid Szyvbkosc transferu;
Wydaweca: Nieznany wydawca

o [1Zdselect the Run » | Urachom
option -

Mazwa: python-2.5.2.msi

] [Mie uruchamiaj

Ten plik nie ma prawidtowegao podpisu cvfrowega weryfikujgceqn jega
wydawce, Malezy wytacznie uruchamiad oprogramowanie pochodzace od
zaufanych wydawcow, Jak zdecydowad, czy oprogramowanie mozna
uruchomic?

Figure 5.1.3 Downloading the installation program from the Python portal

(If you do not like to run the programs from the Internet directly, you can save this file on your disk, first).

Make sure, that you have the full (i.e. Administrator) privileges to your computer, and run the installation pro-
gram. Go through the installer screens, just pressing the Next button (Figure 5.1.4):

11§ Python 2.5.2 Setup

11§ Python 2.5.2 Setup

Select whether to install Python 2.5.2 Select Destination Directory

for all users of this computer.

Please select a directary for the Python 2.5.2 files.

e

@ Install for all users EF Python2s

O Install just for e

A

python

for

windows

i Python 2.5.2 Setup

A

python

for

windows

Customize Python 2.5.2

Select the way you want features to be installed.
Click on the icons in the tree below to change the
way features wil be installed.

2 [=2-]

Register Extensions
TolThk
Docurnentation
Utility Scripts

Test suite

Python Interpreter and Libraries

This feature requires 18ME on your hard drive, It
has 5 of 5 subfeatures selected. The subfeatures
require 18ME on your hard drive,

[Disk Usage] [Advanced]

[< Back] Mext > Cancel

Figure 5.1.4 Subsequent screens of the Python installer

A

python

for

windows

[F:\python2s,

i Python 2.5.2 Setup E|
Install Python 2.5.2

Please wait while the Installer installs Python 2.5.2. This may take
several minutes.

Status:

Cancel

Copyright Witold Jaworski, 2011.

102 Appendices

At the end, the program will display such a screen (Figure 5.1.5):

i Python 2.5.2 Setup

Completing the Python 2.5.2 Installer

Special Windows tharks to:
Mark Harnrmiond, withiout whose years of freely
shared Windows expertise, Python for Windowes
wiould sl be Python for DOS,

python

for

windows

Click the Finish button to exit the Instaler,

= Back Cancel

Figure 5.1.5 The last screen of the Python installation

Press the Finish button, to finish this process.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 5 Installation Details 103

5.2 Details of the Eclipse and PyDev installation

e First, check if you have Java Runtime Environment (Java JRE) installed on your computer. In Windows you
should have a “Java” icon, in the Control Panel. If it is not there — download the latest version from the ja-
va.com site and install it on your machine®.

Let’s start by downloading Eclipse. Go to the http://www.eclipse.org/downloads page (Figure 5.2.1):

- Eclipse Downloads - Program Windows Internet Explorer dostarczony przez TADMAR

\F; ;—"; |E eclipse.org v| B 42| X I:-.l
5.7 Ulubione [Eclipse Downloads B-0-2 &- s

isit other Eclipse Sites

Indigo is Coming!

Join the Indigo 500 m g €

Home Downloads Users Members Committers Resources Projects About Us

Eclipse Downloads

Packages Developer Builds Projects

Compare Packages Older Versions Eclipse Helios (3.6.2) Packages for [l v I

Eclipse IDE for Java Developers, 22 1B Windows 32 Bit
Downloaded 1,685 308 Timez Details Windows 64 Bit
= Eclipse IDE for Java EE Developers, 205 1B Windows 32 Bit
Downloaded 1,247 215 Times Details Windows 64 Bit
. Eclipse Classic 3.6.2 171 1B Windows 32 Bit
Downloaded 822,124 Times Details Other Downloads Windows 64 Bit

) JRebel for Eclipse Fromoted Downlosd Q Download

4" Redeploying sucks. Try JRebel: Code without interruption. Save 1 hour a day.

@+ Eclipse IDE for C/IC++ Developers, a7 MB Windows 32 Bit
Downloaded 408,951 Times Details \ Windows 64 Bit
& Eclipse for PHP Developers, 141118 N\ Choose a package that]vs 32 Bit
@B o nioaded 234,703 Times Details has the smallest size! vs G4 Bit

Figure 5.2.1 Selection of the Eclipse package

In fact, Eclipse is a kind of open programmers environment. It is just a framework, which can be adapted to work
with any programming languages by appropriate plugins. On the Eclipse Internet site you can find some popular
plugin packages for the most popular languages. There is no ready "Eclipse for Python" bundle among them, so
we will make it ourselves. Just download any of these packages (I have chosen the one that has the smallest
size). Since July 2011, it is Eclipse for Testers (87 MB), which uses the Eclipse version 3.7 (,Indigo”). | wrote
this book using the earlier version: 3.6 (,Helios”). In that version, the smallest package was Eclipse IDE for
C/C++ Developers (also 87 MB). Eclipse for Testers will install the PyDev plugin somewhat longer, but later its
eclipse.exe will open the whole environment a little bit faster.

All the Eclipse packages are just plain *.zip files. Save the downloaded one somewhere on your disk. (To write
this book, | have downloaded file named eclipse-cpp-helios-SR2-win32.zip).

! Some Linux distributions, like popular Ubuntu, have GCJ as their default Java virtual machine (VM). In this environment, Eclipse runs
much slower than on the JVM from the www.java.com. What 's more, even after the JVM installation on Ubuntu, it is not set as the default
VM! You have to correct it manually. More about this — see https://help.ubuntu.com/community/EclipselDE.

Copyright Witold Jaworski, 2011.

http://java.com/pl/download
http://java.com/pl/download
http://www.eclipse.org/downloads
http://www.java.com/
https://help.ubuntu.com/community/EclipseIDE

104 Appendices

The downloaded file contains the eclipse folder, with the program ready to run (Figure 5.2.2):

% C:\Documents and Settingsw4979721\WMy Documentsibylecoleclipse-cpp-helios-SR2-wi... |:| |§| E'
Iy

Plil. Edvcja Widok Ulubione Marzedzia Pomoc ";
Adres |:§ Ci\Documents and Sethingsiwda7a721 My Du:ucuments'l,l:uylecu:u'leclipse-cpp-heli:ns-SRE-winSE.zip b | Przejdz
Faldery x Mazima 1 Typ Rozmi. .. Ma ...
1
1 File Folder OKB
C3) Intel “Q&:]
I MsoCache :
El] Program Files ! Move this folder from the
I 1E * zip file to Program Files
I 7-Zip
I Adobe
I ALLConverter PRO
|5 ALLPlayer

Figure 5.2.2 Unpacking the program folder

Just extract it to the Program Files folder. (Yes! There is no installer, which would do some unclear settings in
your precious system! Eclipse has no external dependencies except the Java Virtual Machine, and does not
change anything in the Windows registry. Thus, you can simultaneously use many alternate Eclipse versions,
without any conflict).

To launch Eclipse, just run the eclipse.exe program (Figure 5.2.3):

%% C:\Program Files\eclipse :

=

3

Plil. Edvcja Widok Ulubione Marzedzia Pomoc ";
Adres ||.f.‘ C:\Program Filesiedipse v| Proeids
Faldery X Mazwa Rozmiar = Tvp
I Common Files ~ I configuration File Folds
I ComPlus Applications |2 dropins File Folds
= 2 eclipse ICfeatures File Falds
I3 configuration Dpz File Folds
IC3) dropins I plugins File Folds
=) Features - [ireadme File Faldd
) p2 'IE'E:isps%rogram runs .ec.lipseprclduct 1KE Plik ECLIR
IC5) plugins x% artifacts, xmil 63 KE Daokume
) readme 52 KE Applicati
I eclipse.cpp ~beclipse.ini 1EE Configur
I3 edipse.org Feclipsec. exe 24 KE Applicati
) Filezila 8] epl-v10. html 17KE HTML Do
o Gmp @ notice. hti 9KE HTML Do

Figure 5.2.3 Launching Eclipse

You can insert a shortcut to this file in your favorite menu or place it on your desktop.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 5 Installation Details

105

When you launch eclipse.exe program, it always displays a dialog box where you can select the location of the

Eclipse projects directory (it is called “workspace”). You may just confirm this default (Figure 5.2.4):

&= Workspace Launcher D_<|

Select a workspace

User’s home directory. (Notice, that it

Eclipse stores wour projects in a folder called a warkspace, !
is not the My Documents folder!)

Choose a workspace Folder bo use For this session,

Waorkspace: | i Documents and Setkingsw4979721 hworkspace V| [Browse. ..

]

|lse this a5 the default and do not ask again
If you are not going to work on more than one

K, l [Cancel

]

project in the same time, you may check this option

Figure 5.2.4 Selecting the current workspace

Each of Eclipse projects is a separate folder, containing a few configuration files, and the files with your code. (If

your script is located elsewhere on the disk, you can put in the project just its shortcut). Notice that t

he default

Eclipse workspace folder is located in the root directory of the user profile. (In this example, the username is

W4979721). This is not My Documents folder — just one level up. (It is the Unix/Linux convention of
directory). If you keep all your data in the My Documents folder — change the path displayed in thi
Eclipse will create the appropriate directory, if it does not exist.

the home
s window.

Eclipse is always trying to open in the workspace the recently used project. On the first launch it is impossible,
because the workspace folder is empty. Therefore, the version 3.6 displays following warning (Figure 5.2.5):

& Unable To Launch f'5_<|

- J The selection cannok be launched, and there are no recent launches,

Figure 5.2.5 The warning, displayed on the first launch of an Eclipse workspace

They have fixed it in the version 3.7. In any case, there is nothing to worry about.

Copyright Witold Jaworski, 2011.

106 Appendices

When there is no active project, in the current workspace, Eclipse displays the Welcome pane. (Figure 5.2.6):

& CIC++ - Eclipse

File Edit Source Refactor Mavigate Search Run Project Window Help

EEX

(%) welcome 57

B aAFEE

Welcome to the Eclipse IDE for C/C++ Developers

Find out what is new

Figure 5.2.6 Eclipse window on the first launch

The best way to install the PyDev plugin is to use
Eclipse internal plugin management facilites. Invoke
the Help-?Install New Software command (Figure
5.2.7).

(The location of this command in the Help menu may
be a little surprise for regular Windows users . They
rather would expect it in the Edit or the File menu. It is
just specific for Eclipse.)

Programming Add-Ons for Blender 2.5 — version 1.01

Welcome

{Z) Help Contents
5@" Search
Crynarnic Help

kew Assist, ., Ckrl+ShifE+L
Tips and Tricks. ..

E}' Repart Bug ar Enhancement, ..
Cheat sheets. ..

Check for Updates

Install Mews Software, .

Eclipse Marketp&ce. ..

about Eclipse

Figure 5.2.7 Installation of an Eclipse plugin

www.airplanes3d.net

Chapter 5 Installation Details 107

In the Install dialog, type the address of the PyDev project automatic updates page: http:/pydev.org/updates
(Figure 5.2.8):

& Install

- BX]

o

vl add. ..

Available Software

Type here the PyDev
project address...

Select a site or enter the location of a site,

Wik, with:@" http:ipydey.orgfpdates

Find more software by working with the "a&vailable Software Sikes’ r CEs,

—

—/ |

... and press
| this button!

Marme
[](@ There is no site selecked,

Version

& Add Repository

Mame: | |[Local...]
Here you can give this A:nn:aﬁ::|http:,l',l'p':.fdev.n:-rg,l'updates |[Archive. .,]

source a more “elegant’
name, instead of the url.

__

@ l

H Cancel]

Oh.,
b

Figure 5.2.8 Adding to the software vendors list the PyDev entry

Then press the Add button. It opens the Add Repository dialog box. When you confirm it, Eclipse will read the
components, exposed on this page (Figure 5.2.9):

& Install

- B

o

v (e]

Find more software by working with the "awailable Software Sikes” preferences.

Marme
[#] 000 PyDev
1000 pyDey Mylyn Integration (optional)

+++++++++++ Y

Available Software

Check the items that wou wish to install,

Wark with: | http:/ipydev.orgfupdates

Yersion

Marne Mersion
Select All] [Deselect All |.||:":| P‘:.-'DEV
Details 00 PyDew Mylyn Inkegration (optional)

Group ikems by category

Showe only the latest versions of available soFth

Hide items that are already installed

Select the PyDev component

[¥] Contact all update sites during install to find required softw, and press the Next button.

®

A\ 4
< Back uexi B Einish

Figure 5.2.9 Selection of the PyDev plugin from its project site

Select on the list the PyDev component and press the Next button.

Copyright Witold Jaworski, 2011.

http://pydev.org/updates

108 Appendices

Eclipse will display an additional list containing the details of installed components (Figure 5.2.10):

& Install

Install Details

Review the items to be installed,

1
'
1
'
'
1
'
1
'
)

Marme Wersion |
'
@ PyDev for Eclipse 2.1.0.2011052613 | org.python.pydev.feature.feature.g..
i

Install Details i
Here you can see

the actual version

Review the items ko be installed, |
i |of this plugin...
1

fame Wersion /

1
1
1
Gt PyDev For Eclipse 2.1.0,2011052613 !
1
1

£

Size: Unkniown
Details

®

Figure 5.2.10 Confirmation of the installation details

After pressing another Next button, Eclipse will display the PyDev license agreement, for your acceptance
(Figure 5.2.11):

& Install

Review Licenses

Licenses must be reviewed and accepted before the software can be inskalled,

License kext (For PyDey for Eclipse 2,1.0,2011052613):

Eclipse Public License - v 1.0 A
THE ACCOMPANYIMNG PROGRAM IS PROYIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC LICENSE

{"AGREEMEMT"), ANY LISE, REPRODUCTION OR DISTRIEUTION OF THE PROGRAM COMSTITUTES RECIPIEMT'S
ACCEPTAMCE OF THIS AGREEMENT,

1, DEFINITICONS

"Caontribution” mearns:

&) in the case of the initial Contributor, the initial code and documentation distributed under this Agreement, and
bl in the case of each subsequent Conkributor:

i’changes ko the Program, and

iidadditions to the Program;

where such changes andfor additions ko the Program originate from and are distributed by that particular
Contributor, A& Conkribution ‘originates’ from a Contributor if it was added to the Program by such Contributor itself or
anvone acting on such Contributor’s behalf, Contributions do not include additions ko the Program which: (i} are
separate modules of software distributed in conjunction with the Program under their own license agreement, and (i)
are nok derivative works of the Pragram,

"Contributor” means any person o entity that distributes the Program,

“Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by the use or sale %

(1 accept the kerms of the license agreement:

()1 do not accept the terms of the license agreement

@j [Einis?“‘?” Cancel
L

Figure 5.2.11 Acceptance of the PyDev license agreement

When you press the Finish button, it will launch the installation process.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 5 Installation Details 109

During the installation, Eclipse downloads from the Internet the appropriate components. It shows the standard

progress dialog (Figure 5.2.12):

- B

& Installing Software

Downloading org.eclipse.jdt. debug

5

[Run in Background” Cancel] ’ Details ==]

[always run in background

Figure 5.2.12 The progress of the installation
Once the download is complete, Eclipse will ask you for the confirmation of the plugin certificate, in the next

window (Figure 5.2.13):

& Selection Needed

Do yiou krust these certificates?

Aptana Pydey; Pydey; Aptana

In the future, you can see here the name of
Appcelerator instead of Aptana. (Appcelerator bought
Aptana in 2011). If you are in doubt, check the current
information about PyDev in Wikipedia.

Select Al] [Deselact Al

= Aptana Pydev; Pydey; Aptana
Aptana Pydew; Pydev; Aptana

@ OF l ’ Cancel

Figure 5.2.13 PyDev certificate confirmation
After confirmation of the certificate the last window will appear, finishing the installation process. (Figure 5.2.14):
& Software Updates [g|

You will need to restart Eclipse For the installation changes ko take effect, You

L maty try to apply the changes without reskarting, but this may cause errors,

[Restart Mow RJ [Mok Mo] [.ﬁ.ppl';.f Changes Mow

Figure 5.2.14 Final window of the PyDev plugin installation

I think it is always worth to agree on the proposed restart of the Eclipse.

Copyright Witold Jaworski, 2011.

110 Appendices

5.3 Details of the PyDev configuration

Once installed, you have to configure the default PyDev Python interpreter. This information is stored in the
current Eclipse workspace (ref. page 11, Figure 1.2.4). To set it, use the Window =>Preferences command
(Figure 5.3.1):

£ CIC++ - Eclipse

File Edit Source Refactor Mawvigate Search Project Fun BUGEES Help

i H N

() Welcome £ Hew tWindow Do A& AT
Mew Edibor

Show Toolbar ~

Open Perspective
Show View

Customize Perspective. ..,
Save Perspective As. .,
Reset Perspective, ..
Close Perspective

Close All Perspectives

Mavigation

Figure 5.3.1 Opening the current workspace configuration

In the Preferences window expand the PyDev section and highlight Interpreter - Python (Figure 5.3.2):

& Preferences

| bype Filker bext | Python Interpreters r 1 o
-G |
" CFCH_T_T Pwthon inkerpreters {e.g.: python.exe)
-- Help Mame — L cation e
- InstallfUpdate Highlight this ... and press
[Java element.... this button | ————| AutaConfig
= PyDey k
- Builders Rermave
[+ Debug
L
[+ Editor .
- Interactive Console Doany
- Inkerpreter - Iron Python

AHHETREELET = SAhan Bl Libraries |F|:|r|:ecl Builtins " Predefined || P& Ervironment || & String Substitution Variablesl
-{Interpreter - Python

- Logging System PYTHOMPATH

Mew Fold
- Pyt e Folder
- Scripting PyDey Mew EggiZipis)

- Task Tags
[+ Tasks

Figure 5.3.2 Automatic configuration of the Python interpreter

Then press the Auto Config button. If the path to your external Python interpreter is added to the PATH system
variable, PyDev will find it. (In this case, the configuration wizard will open the window shown in Figure 5.3.5).

It will also find alternative interpreters, if they are installed in their default directories. In such a case, PyDev will
display their list, asking you to select one.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 5 Installation Details 111

However, if the program could not find Python - it displays a message (Figure 5.3.3):

& Unable to auto-configure. |:|®

IUnable ko auto-configure the inkerpreter,

Please create a new interpreter using the 'Mew' button,
Reasan;

IUnable ko gather the needed info From the system,

This usually means that your inkerpreter is not in

the syskem PATH.
| o | Detais >>
b

In such a case, in the Properties window press the New button (see Figure 5.3.2). It will open the window of
»-manual” Python selection (Figure 5.3.4):

Figure 5.3.3 PyDev warning, when it cannot find the Python interpreter

& Select interpreter

Enter the name and executable of your interpreter This is the *human” name of this interpreter,
which will be used in PyDev
x
Interpreter Mame: “ Python 3.2 |
Interpreter Executable: ”C:'I,F‘rn:ngram FilesiPython32ipython.exe | [Browse, .,]

The full path to the python.exe
executable file

| ok D\\‘J[Cancel |

If you do not make any mistake in the path, then after pressing the OK button PyDev will display another win-
dow with some Python directories. The selected ones will be added to the PYTHONPATH configuration variable
(Figure 5.3.5). Just accept it without any changes:

& Selection Needed |:|®

Select the folders to be added to the S¥STEM pythonpath!

Figure 5.3.4 “Manual” Python configuration

IMPORTAMT: The folders for wour PROIECTS should MOT be added here, buk in wour project configuration.

Check:http: ffpydey. orgfmanual_101_interpreter beml For maore details,

&= C:\Program Files\Pythons2

%=, C:\Program Files\Python32\DLLs

& C:\Program Files\Python32)lib

%=, C:\Program Files\Python32\liblsite-packages

] Eu Ci\Program Fileshedipse\pluginstorg. python. pedey_2.1.0. 201105261 3 PySrc
] El C W IMDOW S syskem 32 python3z zip

[Select Al][Deselect Al]

@ | ok L\\s‘J[Cancel |

Figure 5.3.5 Selection of the directories that will be added to the PYTHONPATH system variable

Copyright Witold Jaworski, 2011.

112 Appendices

In the result, the configured Python interpreter appears in the Preferences window (Figure 5.3.6):

& Preferences |:|@E]

| | Python Interpreters

E?Cnifl Python interpreters (e.g.: python.exe)
Help Mame Location e, ..
InstallfUpdate 2 python 3.2 C:\Pragram Files\Pythand2tpythan, exe
(=) PyDey
Builders

Ede,':”g Configured Python
or interpreter
Interactive Console
Interpreter - Iron Python
Inkerpreter - Jython B Libraries |F|:|rced Builtins | Predefined | B8 Enwironment | # String Substitution Variables

Interpreter - Python

Logaing System PYTHONPATH

PryLink = =i System libs
PyLnit =Y Mew Folder

& CAProgram Files\Python3z

Scripting PyDey & C\Program Files\Python32\0LLs Mew Eqg)Zipls)
Task Tags & C\Program Files\Pythan3zilib
RunfDebug El C:\Program Files|Python32\iblsite-packages
Tasks

[Restu:ure Defaults] [Apply l

- - Press the OK button, to

("_?] confirm these settings “” = %J[Camcel]

Figure 5.3.6 Configured Python interpreter

When you accept this, pressing the OK button, PyDev will browse all the Python files that are present in the
PYTHONPATH directories. It will prepare the autocompletion data and the other internal stuff (Figure 5.3.7):

Progress Information h;

i J reating {system: pwthon - C:YProgram. ..info {918 of 1341) for kest_deque.py

| [ITI)

Cancel

Figure 5.3.7 Processing the PYTHONPATH files

e Beware: During the installation of PyDev version 2.2.1 (more precisely: 2.2.1.2011071313) in the Eclipse
3.7 (,Indigo”) Eclipse for Testers package, | saw an error message of Java runtime exception, in one of the
running programs. It had appeared on this last stage of the Python interpreter configuration. Nevertheless,
the Python files were still processed (underneath the window with this message), and this processing was
finished within a few seconds. This error did not cause any noticeable irregularities in the operation of the
Eclipse + PyDev environment.

During the earlier installations — PyDev version 2.1.0 (2.1.0.2011052613) in the Eclipse 3.6 (,Helios”) Eclipse
for C/C++ Developers package, there were no such errors.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 113

Chapter 6. Others

In this chapter, you will find all the other additional materials of this book. (It is kind of the final "hodgepodge". It
would be too difficult to divide this information into a well-organized structure).

Copyright Witold Jaworski, 2011.

114 Appendices

6.1 Updating the Blender API predefinition files

The Blender Python API changes a little in each Blender release. In the doc folder (see page 39) you will find
the shortcut, that will update your PyDev predefinition files for this latest version (Figure 6.1.1):

fdres |3 C\Program Files\Blenderdoc o a
Faldersy x Mazwa Rozmiar =~ Tvp
= | Blender I python_api File Folder
) 2.57 [Frefresh_python_api,bat 1EE MS-DOS Bakch Fi
= i) [ulals
=l |) python_api

This shortcut will update your *.pypredef
j p';.-'prE::E::: X files to the latest Blender version
pypredef-tmp

Figure 6.1.1 Contents of the doc folder

This Windows batch file calls the pypredef_gen.py script, from doc\python_api directory (Figure 6.1.2):

fdres |23 C\Program FilestBlenderydocpython_api b a
Faldery x Mazwa Rozmiat = Tvp
= |2 Blender ~ I)pypredef File Folder
#5257 I pypredef-tmp File Folder
=l [2) dac |#] pypredef_gen.py 49KE Plik Py
S 0y thon_api
) pypredef Script that creates or updates the

I pepredef-trmp * pypredef files

Figure 6.1.2 Contents of the doc\python_api folder

Theoretically pypredef_gen.py should run properly also in other operating systems, like Linux. | have not tried it.
This script is a reworked version of the sphinx_doc_gen.py, developed by Campbell Barton for automatic gen-
eration of the Blender API documentation. (The same, which is published on the blender.org pages). Thanks to
this code, descriptions of all functions and methods in the PyDev predefinition files are the same as in the offi-
cial APl documentation. Just like there, they contain even the descriptions of each procedure parameter. The
only module that is not documented this way is bge. In addition, the bpy.context has some gaps, because it
has the variable structure that depends on the kind of the current Blender editor (View 3D, Python Console, etc).

The result of the pypredef_gen.py script — the *.pypredef files for the corresponding Python APl modules — are
placed in the doc\python_api\pypredef folder (Figure 6.1.3):

fdres |23 C:\Program Files\Blendertdocpython_apitpypredef b a
Foldery X Mazwa Rozmiar = Typ

= [3) Blendsr -~ j bpy. pypredef 1191 KB Python header fi

#3257 j mathukils, geometry . pypredef A KE Python header fi

= 10 doc j rnathukils, pypredef 31 KB Python header fi

= 3 python_api ﬂ by .utils. pypredef % 4 KB Python header Fi

) pypredef ﬂ bpy. app.pypredef 3KE Python header fi

) pypredef-tmp j blf . pypredef k PyDev predefinition files for the|fi

£) Blender-2.49 j by, path. pypredef Blender Python APl modules i

% 3 blendsr-2.56 j aud. pypredef 16 KB Python header fi

% |7 Blendsr-2.57 j bgl. pvpredef 3KE Python header fi

% |7 Blendsr-2,57a j bpy.props.pypredef 7EB Python header fi

e - -

Figure 6.1.3 Contents of the doc\python_api\pypredef folder

This folder should be referenced in the PyDev project configuration as the external library (see page 40).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 6 Others 115

When you upload a new Blender version (or move the doc folder into the directory with another Blender release)
run the doc\refresh_python_api.bat shortcut (Figure 6.1.4):

Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current

Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning:
Warning: Current

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches
matches

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

*EnumProperty’ .,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
EnumProperty’ ,
'EnumProperty’ .
*EnumPropert y: .

modifier’ .
constraint_ori
‘defaun
pose’ . ‘defaul
constraint_ori
constraint_ori
image’, ‘defaun
‘tupe’ . ‘defaul
constraint_ori
property’ . ‘de
modifier’ .
scene’ .
action’ .,
constraint_ori
modifier’, ‘de

r
1
r
1
r
1
r

'EnumProperty’ . 'constraint_ori
These messages always
appear - just ignore them

Warning: Current value "B8" matches no
not documenting mathutils .geometry
izsing argument declaration for
Missing argument declaration for
deprecated: mathutils.old
updating: mathutils.pypredef The file updated during this

run

C:sProgram FilessBlendersdoc *pause

F [9

Figure 6.1.4 Updating of the Blender API predefinition files

That is all. Just remember to add the doc\python_api\pypredef path to the configuration of each PyDev project.
To do it, go to the project properties (Figure 6.1.5):

& PyDev - Bevel/src/mesh_bevel.py - Eclipse

File Edit Source Refacktoring Mavigate Search BE@Ed® Pydev Run window Help
FEar o e F=o e =k - & - :
o 1. Highlight the o Close Project Y %5 Debug @ PyDer
roject folder
[pyDev PAckage prol = ﬂ:b g = H
= & =
: . Oz
=2 =t Build Warking Set S 2’"(’3“: " o-
+ ﬂ mesh_bevel py Clean. .. .ro Zrt(i)elss
= Python 3.2 (CProgram FilesiPython32ip v Build Automatically prop
R C:\Program FilesiPython3z 11t

+- B4, System Libs
=i Predefined Completions

]

Figure 6.1.5 Opening the project properties

In the Properties window select the PyDev — PYTHONPATH section, and then, on the right pane — the
External Libraries tab (Figure 6.1.6):

& Properties for Bevel

1. Select PyDev - PYTHONPATH 2. Open
this item this tab

The final PYTHOMPATH used For a launch is Aomposed of thepars
defined here, joined with the paths defin#d by the selected interpreter,

Project R&ferences

PwDey - Inlgrpreter/ara

PyDeyv - PYTHONPATH

Run/Debug Settings

+- Task Repositary
WikiText

. External Libraries

[Source Folders & Skring Substitukion Yariables

Excternal libraries (source Folders)zips/jars/eqgs) outside of the waorkspace,

When using variables, the final paths resolved must be filesystem absolute,

Changes in external libraries are not monitored, so, the 'Force reskare inkernal info’

Figure 6.1.6 Opening the PyDev - PYTHONPATH pane

Copyright Witold Jaworski, 2011.

116 Appendices

Initially, the project does not have any external libraries (the list in this tab is empty). Press the Add source
folder button, and add the doc\python_api\pypredef directory (Figure 6.1.7):

PyDev - PYTHONPATH s v -

The final PYTHOMPATH used for a launch is composed of the paths
defined here, joined with the paths defined by the selected interpreter,

[Source Folders | %) External Libraries | @ String Substitution Variables

Use this button to
add a new one

External libraries (source Folderszips/jarsieggs) outside of the workspace,

when using wariables, the final paths resolved must be fileswstem absolute,

Changes in external libraries are not monitored, so, the 'Force restare internal info'
should be used if an external library changes,

Initially, there are no /
external libraries

Farce restare internal info

Add source Folder

Przegladanie w poszukiwaniu folderu

= |Z) Blender -
H) 257
= |2 dac
= I2) pwthon_api
= |:|':.-'|:|I'E|:|E=F
) pypredef-tmp
+ | Blender-2,49
4 |J) blender-2.56
+ |) Blender-2.57
#| [Blender-2,57a b/

Folder: | pvpredef

Ubworz nowy Folder I a4 [Anuluj
2

Figure 6.1.7 Adding the PyDev predefinition files folder as an “external library”

When the folder with Blender API files is already on the list, press the Force restore internal info button. From
the description in the window, it seems that you have to do it after each change in this list (Figure 6.1.8):

PyDev - PYTHONPATH =1 -

The final PYTHOMPATH used for a launch is composed of the paths
defined here, joined with the paths defined by the selecked interpreter,

[Source Folders | & External Libraries | @ String Substitution Yariables

External libraries (source Folders/zips/iarseqgs) oukside of the workspace,

When using variables, the final paths resolved must be Filesystem absoluke,
Changes in external libraries are not monitored, so, the 'Force restore internal info' ‘
should be used if an external library changes., :

A
= C\Program FiIes'l,BIender'l,-:!u:uc'l,p';.-'thu:un_api'l,p';.-'predeF [Add source Falder l

[&dd zipfjar/eqgq]

[.ﬁ.dd based on variable]

Press this [Remove]
button

Force restare inkernal inFD&

[Restore Defaulks] [apply]

Figure 6.1.8 Forcing the refreshing of the project internal data

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 117

When you have approved the changes in the project configuration, add to the beginning of the script the ,import
bpy” statement. It suggests PyDev that it should use the declarations from the bpy (Blender API) module. Then,
at the time of writing the code, just type a dot after the name of the object. PyDev will display the list of its meth-
ods and fields (Figure 6.1.9):

Fi-H B = A < R I SR S SR Fj %% Debug | ¢ PyDev
(2 pyDev 2 = 0 |jF £ = H
= q:b = Frr Add Fhis s;atement,_first! _ - =
- T TR .|Nothing will work without it! O-
—— e simpledt scrilk s
= Bevel O
- src) Then write the code as usual — after
+-¢f] mesh_bevel.p: ’H“p':'rt bpy ‘ typing a dot, you will see the member
= PythnnS_z (CHiPr def main () : list of the appropriate class
o C:\Program Fil o cul?le = bpy.data. —
=@, System Libs print (cube.name)] O |atkices ~
+-m) ChPrograr _ & libraries
+-om) CHYPrograr wain () & materials
+-m) ChPrograr & meshes
g CHPrograr O metaballs
=, Predefined Coi @ node_groups
+ B Forced builting| = G%
t Prablems | B consale &3 '? particle
PywDiev Scripting '-.9]' path_from_id{property) 3z
L >
Press CtH+Space For ternplates,

Figure 6.1.9 Code autocompletion — after typing a dot

More about the PyDev autocompletion functions you can find on page 41 and the next.

e Beware: On the official PyDev page (pydev.org) you can find different description how to use the predefini-
tion (*.pypredef) files'. The problem is that the addition to the Predefined section, described there, did not
work on my computer. Thus, | introduced here the proven and effective, although somewhat "unorthodox”,
method.

Moreover | believe, that assigning such a Blender API reference to the particular project, not the whole work-
space, is better. You can write in parallel yet another project in the external Python. In such a project, the hints
on the Blender API would only disturb the user.

! It is described in this article: http://pydev.org/manual 101 interpreter.html

Copyright Witold Jaworski, 2011.

http://www.pydev.org/
http://pydev.org/manual_101_interpreter.html

118 Appendices

6.2 Importing an existing file to the PyDev project

You can add to the PyDev project the files that have already existed on your disk. Pull down the context menu
from the folder, where you want to have them, and invoke the Import... command (Figure 6.2.1):

File Edit Source Refactoring Mavigate Search Project Pydew Run Window Help

i - R R R R
[PyDev PackageE i = 08| [F] mesh_bevel 2 [P bpy =g
—*, = -
=% | o |
. o N - t
= = Bevel 1. Highlight the target folder| ~*
=2 src and open its context menu
EI mesh_begel.py T A
= “def main|():
= Python 3 Newr - - . , ohijecta["Cube™
1= Copy
ol
|z Paste
¥ Delete
Move, ..
Rename... 2. Invoke this command

£ Export. ..

Figure 6.2.1 Importing an existing file to the project folder

It opens the Import wizard window. On the first pane, select the General 2File System item as the source
(Figure 6.2.2):

& Import |:|®

Select

Y
Impoart resources Fram the local file syskem inko an exisking project., I E - 5 l

Select an import source:

== General
[E archive File
ﬁ Existing Projects into Workspace
o < Select this source
r |
L Preference
= o+
= Vs

[

[£

©

Figure 6.2.2 Selecting the import source

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others

119

On the next pane, select the folder that contains the file/files to import (Figure 6.2.3):

& Import

File system

Source musk nok be empky,

Click here, to select the

(=1

=

source folder a
|
. v
Fram directory: b d | Browse... l
lage
This is the target folder (one
Filter Tvpes... Select All Desel=ct o/|of the project directories)
Into Folder: |Bevel,l'|:ulender file | [Browse, ..

Options
|:| Crverwrite existing resources withauk warning

[]create complete folder struckure

This form is not filled, yet. That's

why the Finish button is grayed out j‘

@ Mext = Firish

Cancel

Figure 6.2.3 Empty import wizard pane

To select an existing source folder, or to create a new target one, use the Browse... buttons (Figure 6.2.4):

Import from, directory

Select a directory bo import from,

?X

= 23 Elender
=25

Select the

= O -
=) __pycache_
I3 Lekcie
I=5) seripts
I textures
I3 Blender At
I3 Edlipse
[Human

source folder

[

(£

Faolder: | Python

[thwc'urz nowy Folder]

| o E[Ay |

Figure 6.2.4 Selection of the folder

Copyright Witold Jaworski, 2011.

120 Appendices

When the source directory is selected, you will see its content in the right pane (Figure 6.2.5):

& Import |:|®
P —

File system y
@ There are no resources currently selected Far impart, |.-_f .-_“
'¥ Yet, we have not -
selected any file ...
From directory: | Ci\Documents and Settingsiw4979721\My Documents|Blender) 2.t v| [Browse. ..]
v
[]E Python] :;Q.ﬁ.rraySkEtch_vD_ﬁ_alpha.zip ~
u bevel.blend —
Content of the |=| bevel.blendil
selected folder [] |Z| bevel blendz
[[FlBevel.py v
. ?
Filker Types...] [Select Al] [Deselect Al]

Figure 6.2.5 Displaying the source folder content

Select at least one file to import (Figure 6.2.6):

& Import |:|@

File system —
Import resources From the local file system. |.-_" .-"
¥~ [When you select a file — the -
error message will disappear
From directory: | Zi\Documents and Settings'l,w49?9?21:'l,l'~'1y DocumentsiBlenderi2.5 s | [Browse, .,]
1
[=] = Python (L] :;Q.ﬁ.rraySkEtch_vD_ﬁ_alpha.zip -
|| bervel.blend -
[1 = bevel.blend1
[] =l bevel.blendz
[[F] Bevel.py i
45 *

Filker Types...] [Select Al] [Deselect Al]

Into folder: | Bevel/blender file

| [Browse,..

Options
|:| Owerwrite existing resources without warning

[]create complete folder struckure

. and the Finish button
will become active

@

Finish,\g [Cancel
b

Figure 6.2.6 Selection of the imported file

When you do this, the wizard will conclude that it has all the data, now. It will activate the Finish button. Press it,

to copy the selected files to the target project folder.

Programming Add-Ons for Blender 2.5 — version 1.01

www.airplanes3d.net

Chapter 6 Others 121

You can import to your PyDev project various files, for example — the Blender file with the testing environment.
Just double click, to open it (Figure 6.2.7). In this way, you have everything "in one place":

i o
[PyDev Package E &3 = B || [F] mesh_bevel 3 [F] bpy 1
E % :%D — —rrr

= 1 Bevel The simplest script

=B s [3ust double click, to open this

B [P] mesh_bevel.py 1iBlender file

== blender file = e _

P |ﬂ S— cube = ljlpgr. data.objects["Cuba™]

e Python 3.2 I{C qram File prlntMm?be - name)

|

[C:ADocuments and Settingsw49 797 21workspacelBeveliblender filelbe

2 R

(1) Cube

& Object Mode

Figure 6.2.7 Opening the script “testbed”

e PyDev creates in the project folder copies of the imported files. This means that changes you will make to
them will not affect their originals.

However, it is also possible to link to the project a file, which is located somewhere in another directory. That can
happen when you want to work directly on an existing Blender add-on. They are placed in the Blender
scripts\addons subfolder. To link it, start the Import operation in the same way as before (Figure 6.2.8):

e — 5
{2 pyDew Package E 532 8 || [F] mesh_bevel 2] bpy 1
E {% :P#_ v —irrr
= 125 Bevel The simplest script

EE rrr
R Mew r

E‘E’ bl Go Inko .
. |f lata.objeccs["

e py [Copy LA |

L“I'E'I Paste

¥ Delete
Maove, .,

Rename...

& Remove From Conbexk Chelalk+Shift+Dowvwn

£ Export... !

Figure 6.2.8 Linking an existing file — start with the Import command...

Copyright Witold Jaworski, 2011.

122 Appendices

In the Import wizard window select the source folder and the file, you want to link (Figure 6.2.9):

File system P—
¥ The Blender add-ons —i7
Import resources From the local file systern, directory
-
From direckary: | C\Program Files\Blender|2. 57 scripts\ addons_contrib "
4--"""" =
’ [¥] = addons_contrib] [F] mesh_intersection.py

EE] mesh_knife, py
E] scene_handle_panel,py
¥ space_view3d_adjust_projection. py

Select the script you
Filter Types...] [Select Al] [Ceselect all] want to link...
Into folder: | Bewvelfsrc
Options

Owerwrite existing resources without warning

[]create complete folder struckure

: ...then press this button.... |

Figure 6.2.9 Linking another add-on script to the project

Then press the Advanced>> button, to display the additional wizard options (Figure 6.2.10):

Options

Owerwrite existing resources without warning

[create complete fio .. Mark this

<« Banced checkbox

The "reference point” of the
relative path to the linked file

Create links in workspace
Create virbual folders

Create link locations relative to: | ECLIPSE_HOME b

@:‘ Finish R@J[Cancel

Figure 6.2.10 Selection of the linking options

Check the Create links in workspace option, first. This makes PyDev not create a local copy of the file in the
project folder. Instead, it will create there a reference to the original script. This way you can easily change or
reuse the code of plugins, located in the Blender directory.

PyDev also allows you to specify whether to store in the reference the full path to the specified file, or a relative
path. It is controlled by the Create a link is relative locations option. | always use relative paths, because it is
easier to move the project into another location with such a setting. PyDev can also determine the place in the
directory structure, which will be the "reference point" of such a relative path. For the Blender plugins | would
propose to use the ECLIPSE_HOME option. (Most likely, you have both Blender and Eclipse in the same
Program Files directory).

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others

123

When you press the Finish button, the PyDev will add the link to our project (Figure 6.2.11):

& PyDev - Bevelfsrc/mesh_bevel. py - Eclipse

File Edit

.
A

w

[% pyDev Package E &2

= = Bevel
=B sre
[l mesh_bevel.py
=== blender File
U bevel.blend
- Python 3.2 (C:\Program File

Figure 6.2.11 The source file, linked to this project

Source Refactoring Mawvigate Search Project

& B0

Pydevy Run ‘Window Help

[F] mesh_bevel &2 P

- FrF

The simplest =script
rrTFr

This is the shortcut to a file that is
imporilocated elsewhere on the disk

“def maimiy.:
cube = bpy.data.objects["Cuba™]
printcul:ue.na.me]

mainil

As you can see, the linked files are marked in Eclipse by an additional arrow in the lower right corner of their
icon. When you look at the properties of this shortcut, you can read or change the position of the referenced file

(Figure 6.2.12):

Resource

Path: [Bevelfsroimesh_knife.
Type: Linked File

Locakion:

Use this button, to change the
path to the referenced file

ECLIPSE_HOMEY. . \Blender)2, 57 scriptstaddons_contriblmesh_knife, py

Resolved Iu:u:atiu:un:| C:\Program Files\Blenderi 2. 57 scriptstaddons_contribimesh_knife, py |

Size: 158 1582 bytes

Last modified:

Figure 6.2.12 Properties of the linked file

21 marca 2011 15:46:12

N~

The referenced file

Copyright Witold Jaworski, 2011.

124 Appendices

6.3 Details of the Blender scripts debugging

Blender executes scripts using its own, embedded Python interpreter. You can debug them using the built-in,
standard Python debugger. Unfortunately, this tool works in the "conversational” mode, in the console. Thus, it is
not the "user friendly" solution.

You need so-called remote debugger, to follow the script execution in an IDE such as Eclipse. This solution was
originally invented to keep track of the programs that are running on another computer (Figure 6.3.1):

TCP/IP

The Client: Blender

/
When you run the
Run.py script...

import pydev_debug as pydew
lpydev . debug [SCRIPT, PYDEVD PATH, trace
:]

File= Edit Source Refackoring MAwvigate Search Project L True)

i~ ST i i %0~ |3 IELI Runseript |
%5 Debug 2 The pydev_debug.py module

- Once run, the it will start
Bl Console 59 ¥4 Tasks Problegis | 8 server is listening . the debug
Diebug Server all the time import pydevd client process!
Debuyg J3erver at port: 5678 if trace: pydevd.settrace()

Figure 6.3.1 Tracing the Blender script execution: the use of the PyDev remote debugger

In the IDE (like Eclipse) you have to run the server process that starts "listening" to eventual requests from the
debugged scripts. These requests will be sent from a remote debugger client, included in the code of the
tracked script. In our case, this debugger client code is in the pydevd Python package. It is imported and initial-
ized in the pydev_debug.py helper module (see page 129), which is used in the Run.py script template. (This is
the code, which runs our script — see page 58). The communication between the remote debugger client and
its server is realized through the network. Long ago, someone noticed that there are no obstacles to run these
two processes on the same machine. They exchange data using the local network card of the computer. Con-
ceptually, this corresponds to a situation, when two persons are sitting in the same room and talking to each
other via the phone. Fortunately, the programs are "stupid" and do not complain that they have to communicate
in such a circuitous way. This solution works correctly, and it only counts.

Use the PyDev >Start Debug Server command, to start the server of its remote debugger (Figure 6.3.2):

File Edit Source Refactoring MNavigate Search Project

-H@e (AEie
*S;Dh.m'i‘? ‘H

[}
You can use also these Huttons. Do+
Globgls B :
not confuse the server activation| | & Use this command tof:;

with the standard debug button! - - - . start the debug Server
i = process

Run Window Help

121 | % Debug | e PyDev

-eakpaints |Use this command to
terminate the debug
Server process

L

I

Figure 6.3.2 The commands that control the server of the PyDev remote debugger

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 125

What to do, when these PyDev commands do not appear1 on the toolbar nor menu, as in Figure 6.3.2?

Sometimes the Start/End Debug Server com-
mands can be just turned off in the Debug per-
spective! To enable them, use the

Mew Window

Window =>Customize Perspective command 1~ ow Edit) | %5 Debug | € PyDev
1= [{anlg -
(Figure 6.3.3).] = H
Open Perspective k
Sh Wigt s A= -

In the Customize Perspective window, open o
the Command Groups Availability tab (Figure
6.3.4). Find on the Available command groups 5ave Peuspective As...
list (on the left) a command group named PyDev Reset PerSDEEt_WE”'

. Close Perspective
Debug. Just enable it, to let the Start Debug .

Close All Perspectives

Server and End Debug Server commands ap-
pear on the toolbar and the menu!

Mavigation k

T =0

4 o 1 e T

Figure 6.3.3 Opening the Customize Perspective window

& Customize Perspective - Debug |:|@

Tool Bar Wisibility | Menu Visibility | Command Groups Availability |Sh|:|rt|:uts

Preferences

Select the command groups that wou want to see added to the current perspective {Debug). The details Field identifies which
meny items andfor toolbar items are added ko the perspective by the selected command group.

fvailable command groups: Menubar details: Toolbar details:
[] mMake actions Al = Prydey = PyDew Debug
DF'E*!'I Files Fﬁ End Debug Server Fﬁ PyDev: stop the debugger ser
L] Prefile ,3'-‘ Start Debug Server F?-* PyDey: start the pydev server

PyDew Debug

PryDey Navigat[& f
Resource Mavigation — _]
] Rewverse Debugaing This command group
[#] search * | ||must be enabled £ | >
-
@J [5]4] [Cancel

Figure 6.3.4 Enabling the PyDev remote debugger controls

When | made the Eclipse/PyDev installation for this book, the Start / End Debug Server commands were in the
proper place. | did not have anything to fix in the configuration of the Debug perspective. | suppose that such a
problem may be related to the way in which this perspective was added to the project.

e By the way, you have learned how to customize the project perspective ©.

! When | installed PyDev for the first time, such a thing just happened in my Eclipse. | spent whole day browsing through all the PyDev
documentation and the user posts from various Internet forums. In parallel, | continually searched various Eclipse menus, looking for these
two missing commands. In the end, | found them. To save you from similar troubles, | am describing here the solution.

Copyright Witold Jaworski, 2011.

126 Appendices

While debugging the script, you will frequently check the current state of its variables. The PyDev provides the
Variables pane for this purpose (Figure 6.3.5):

(= yariables &7 - ®g Breakpoints The variables that just| &
have changed values are -
Mame ¥alue marked in yellow
2 Globals Global wariables
= @ edge MeshEdge: =bpy_struct, MeshEdge at 0x0E9A430C =
= bevel_weight float: 0.0

2 bl_rna MeshEdge: <bpy_struck, Struck{"MeshEdge™i=

Here you can

bool: False alter the variable

hide:

|
I
: ?nd:x | ::t:llF | = Crease Tl value
fs— gen : oo Fase = hide bool: False
® is_loose i bool: False o index -
= @ key | tuple: (0, 3) '
= 0 : ink: 0
=1 'oink: 3
|
[. .
—len__ A window showing the value _ .
® rna_tvpi/_ of the highlighted variable f, Struct{"MeshEdge")= v
float: 0.0
1
fissign Yalue Chrl+5 - |In this Windoyv, you can a_Iso
k change the variable value - using
this command

Figure 6.3.5 The Variables panel

The panel is divided into the list with names and values of global and local variables, and the detail area. In the
detail area PyDev shows the value of the variable, which is highlighted on the list. | think that detail area is use-
ful for checking longer string values. When the value of a variable is an object reference, Eclipse displays the [+]
or [-] icon next to it. Click this icon to inspect the fields of this object.

In the Variables window you can also change the current variable values. Usually you will simply type them in
the Value column (Figure 6.3.5). You can also change them in the detail area (using the Assign Value com-
mand from its context menu).

The Expressions panel is more convenient for tracking the value of a single object field. You can add it to the
current perspective using the Window 2Show View 2Expressions command (Figure 6.3.6):

TN Help

Flew Window E} | #}; Debug | & PyDev
& . = Hll- - Debug | €

Open Perspective r © e el v e ﬁ |M|
Shiow Wi S, Ereakpaints Alt+shift+, B 0= yariables | ®g Breakpoin G5 Expressia £
Custamize Perspective, Bl consale Alt+Shift+Q, C £ B =
Save Perspective As... % Debug Name Value
Reset Perspective, .. == Disassembly

SR A new expression

Close Perspective @] Error Log Alb4+ShifE+C, L
) Executables

Close all Perspectives

Mavigation

Preferences 0 Memory k

Figure 6.3.6 Adding the Expressions panel

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 127

The Expressions pane layout is similar to the layout of the Variables pane: it contains the list of the expressions
and their current values. There is also the detail area, showing in an larger field the value of highlighted list item.
Unlike in the Variables pane, here you can evaluate any Python expression, at every step of the script execution
(Figure 6.3.7):

()= variables | ®a Breakpoints 95 Expressions 53 % 5 9 V=8
Mame Value Mo details ko
&k edge. select| display for the
:]\ Type the expression current
— here... selection,
)= Yarishles | @ ginks | G5 Expressions 3 0 e RFT T
Marme YWalue float: 0.0
5_5? "edge.select” bool: True

T——— F—— ...to see result of its
g _\WEIT evaluation, here or
on the list

qr Ao nes expression

Figure 6.3.7 Adding new items to the Expressions list

In the Expressions pane you can simply enter the variable name. More often, however, it is used to track the
selected fields of an object. You can also enter here a reference to a specific list item (eg, selected [0]). In con-
trast to the Variables window, here you cannot change the expression result (the content of the Value column is
read-only).

Another useful element for the script debug-
ging is the Blender System Console. This is A0 Blender* [C:\Documents and Settingstw4979721\work
additional text window, beside the main win- m LI Default
dow of the program. When you start Blender, & Manual

the console appears first for a moment, and _ﬁ?.h Release Log

then the main window. Using the Tﬁ“ Blender Website
Help 2Toggle System Console command T
you can control its visibility (Figure 6.3.8).

- Ll

|' ﬁ"- Blender e-Shop

ﬁ‘_!- Developer Cornrmunity
u ﬁ"- User Community

In Blender 2.57b this console

|
Blender System Console is the standard was turned off by default

output of all scripts. (Do not confuse it with the [You have to toggle its visibility

| manually, each time you open . WP S—
Blender Python Console! There you see only Blender. (This setting is not ﬁ"- Python APl Reference
the results of manually typed commands). preserved in the Blender file) & Operator Cheat Sheet

In the System Console you see all the texts B System Info

ﬁ‘_!- Report a Bug

printed by scripts (i.e. the results of the calls to Togale System Console h{ :
the standard print() function). When an error ® Object Mo —

; : . - T jsion fix
occurs during the script execution, here you

will find its detailed description. and Hictory: A Splash Scre

e C:¥Program Files\Blenderiblender.exe

found bundled python: G:“\PROGRA™1-~Blenders2.57puthon

read hlend: C-:\Documents and Settingsw4?79721workspace~Bevel~hlender filesheve
1.bhlend

pydev debugger: warning: psyco not available for speedups <the debugger will stif
11 work correctly, but a bit z=lower) I

This is a message from the PyDev remote de-

bugger client (see also page 28, Figure 2.3.3)
Figure 6.3.8 The Blender System Console

Copyright Witold Jaworski, 2011.

128 Appendices

While debugging a script (i.e. when you trace its code in the Eclipse) Blender is "locked". In fact, it is patiently
waiting for completion of the operation that you have started by pressing the Run Script button.

Still, if you enter an expression in the Server Debug Console in Eclipse, the Blender Python interpreter will eval-
uate it, and its result will be displayed in the Blender System Console. (Figure 6.3.9):

C:\Program Files\Blenderiblender.exe

= & = found bundled python: C:»PROGRA™1-Ble
= x +=| Tasks | [2¢ Problems | §.4 read blend: C:sDocuments and Settings

1.blend
Debug Server pydev debugger: warning: psyco not avd
Debug Server at port: 5678 work correctly. but a bhit s=lowerd

\ Enter a Python \ ... and here is the
expression... result!

Figure 6.3.9 “Cooperation” of the Eclipse and Blender consoles during the debug session

You can treat it as an ,ad hoc" method to check the values of various expressions - for example, a field of an
object (Figure 6.3.10):

e+ C:\Program Files\Blender\blender.exe

El consale 52 v Tasks | 51 Problems Q; found bundled python: G:»PROGRA™1-Blg
read blend: C::\Documentsz and Setting

Debug Server 1.hlend

Debug Server at port: 5673 pydev debugger: warning: psyco not a

P 11 work correctly, but a hit slower?

|Iedge Lhevel weight ‘ HH

_ Type the field ‘\ ... and here is its
name here... value!

C:Program Files\Blenderiblender.exe
found bundled python: G:~PROGRA™1-~Bldg

El console 53 2| Tasks | [2F Problems | 3

Debug Server ie;?ﬂ];éend: C:~Documents and Setting
Debug Server at port: 3673 purdev debugger: warning: psyco not a
T 47 11 work correctly. but a hit slower?
gdge . bevel weight K
HH ¢ bpy_struct. MeshEdge at BxBCIDDAES>
Type the name of ... an here is its default string
an object... representation.

Figure 6.3.10 “Cooperation” of the Eclipse and Blender consoles — other examples

Of course, the same can be checked in the Expressions panel. On the other hand, in the server console you
can more — for example, you can call a method of an object.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 129

6.4 What does contain the pydev_debug.py module?

Actually, to track the script execution in the PyDev remote debugger you need just add two following lines to
your code (Figure 6.4.1):

import pydevd
pydevd.settrace ()

Figure 6.4.1 The code that loads and activates the PyDev remote debugger client

Of course, to have this code worked, you should add to the current PYTHONPATH the pydevd package folder,
before. Besides, this is just the first thing from a longer list of everything, which is needed or worth to do during
such an initialization. Hence, these two lines were expanded to a procedure named debug() (Figure 6.4.2):

"'"'Utility to run Blender scripts and addons in Eclipse PyDev debugger
Place this file somwhere in a folder that exists on Blender sys.path
(You can check its content in the Blender Python Console)

rrir
import sys
import os
import imp

def debug(script, pydev path, trace = True):
"'"'Run script in PyDev remote debugger
Arguments:
@script (string): full path to script file
@pydev path (string): path to your org.python.pydev.debug* folder

(in Eclipse directory) Preparation of the received paths,
@trace (bool): whether to start debugging updating of the PYTHONPATH

,,

script dir = os.path.dirname (script)
script file = os.path.splitext (os.path.basename (script)) [0]

if sys.path.count (pydev path) < 1: sys.path.append(pydev path)
if sys.path.count(script dir) < 1 sys.path.append(script dir)
”””””””””””””””””””””””””””””””””””” |Starting the debugger client I

if trace: pydevd.settrace()

i import pydevd «—

fff w Emulation of the Blender add-on
el

if Sirlpt_flle in sys.modules: handling: unregistering the previous
ry:

__import (script file)

version

3 sys.modules[script file].unregister() |

; except:

3 pass 3

i imp.reload(sys.modules[script file]) ‘/P/__.EerMOnofmeuseHxﬂm
relse: ‘

5 /_ Emulation of the Blender add-on han-
i sys.modules [script file].register () | dling: registering the current version
rexcept: i

; pass }

Figure 6.4.2 The pydev_debug.py script

Copyright Witold Jaworski, 2011.

130 Appendices

| decided to separate the main startup code that runs the Eclipse script inside Blender, into the pydev_debug.py
module. This module contains only one procedure: debug() (Figure 6.4.2). This allowed for maximum
simplification of the Run.py code — the script template, which has to be updated for each new project (see page
58).

e Place the pydev.py module in the directory, which is present in the Blender Python path (i.e. in one of
directories listed in the content of sys.path). In Windows one of them is the folder that contains the
blender.exe file (see page 39, Figure 3.2.2), but it may be different in the Linux or Mac environments. Just
check your sys.path it in the Blender Python Console.

The whole Run.py code contains just a call to the debug() procedure, with following arguments:

e script: path to the script file that has to be executed;
e pydev_path: path to pydevd.py module (this is the PyDev remote debugger client);
e trace: optional. Set this named argument to True, when the script has to be traced in the

debuuger. Set it to False when you want just to run the script without any break. (When
trace = False, you can run this code without Eclipse — see page 124);

Notice (Figure 6.4.2) that the debug() procedure loads the user’s script module using the import statement. It
allows for debugging Blender add-ons®. Before the import, my program attempts to handle the previously loaded
module as the add-on, and unregister it. If this attempt fails — no error is signaled (not every script has to be a
plugin). When the new script is loaded, debug() tries to register it as a new add-on.

e When you write a Blender add-on script, from the very beginning implement the required register() and
unregister() methods. It will allow for properly handling of its Blender registration process, every time you
will press the Run Script button (see page 60).

! Each Blender add-on implements at least one class that derives from the corresponding base classes: bpy.types.Operator,
bpy.types.Panel, or bpy.types.Menu. It also must contain two module methods: register() and unregister(), that perform registration of
these add-on classes for the use in Blender. When the plugin is loaded, Blender calls its register() method, and when it is turned off — it
calls unregister().Then Blender itself creates, when it is needed, the instances of the registered add-on classes. (This is the typical applica-
tion model for an event-driven environment: ,don’t call me, | will call you”. For example, Windows handles its applications in the same way).
That is why you have to put the breakpoints in your add-on code. When Blender creates an instance of the add-on class, and invokes one of
the class methods, they will break execution of this script into the PyDev debugger.

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others 131

6.5 The full code of the mesh_bevel.py add-on

In subsequent chapters of this book, | have created gradually the script code of mesh_bevel.py add-on. The
fragments of its code are dispersed everywhere, in this book. However, after so many modifications it is useful
to present the final result in the "one piece". If you want to copy this text to the clipboard — beware of the tab
spacing! They are all removed, when you copy this code directly from this PDF document. It is better to
download this script file from my page.

The script does not fit into a single page, so | decided to divide it into three parts. The first part is a header that
contains the GPL information and the import statements (Figure 6.5.1):

rrr

Bevel add-on

A substitute of the old, ‘destructive’ Bevel command from Blender 2.49
rrur

bl info = {

"name": "Bevel",

"author'": "Witold Jaworski',

"version'": (1, 0, 0),

"blender": (2, 5, 7),

"api': 36147,

"location'": "View3D > Specials (W-key)",
"category": "Mesh",

"description": '"Bevels selected edges'",
"warning": "",

"wiki url": "",

"tracker url": ""

}

import bpy
from bpy.utils import register module, unregister module
from bpy.props import FloatProperty

v To be continued on the next page...

Figure 6.5.1 The mesh_bevel.py script, part 1 (the declaration)

Copyright Witold Jaworski, 2011.

http://samoloty.wjaworski.pl/downloads/pydev/mesh-bevel.zip

132 Appendices

The next part contains the bevel() procedure, which implements the core operation (Figure 6.5.2):

def bevel (obj, width):
"""Bevels selected edges of the mesh
Arguments:
@obj (Object): an object with a mesh.
It should have some edges selected
@width (float) :width of the bevel
This function should be called in the Edit Mode, only!

mrmrn

bpy.ops.object.editmode toggle ()

bpy.ops.object.modifier add(type = 'BEVEL')
bevel = obj.modifiers[-1]

bevel.limit method = 'WEIGHT'

bevel.edge weight method = 'LARGEST'
bevel.width = width

while obj.modifiers[0] != bevel:
bpy.ops.object.modifier move up (modifier = bevel.name)

for edge in obj.data.edges:
if edge.select:
edge.bevel weight = 1.0

bpy.ops.object.modifier apply(apply as = 'DATA', modifier = bevel.name)

for edge in obj.data.edges:
if edge.select:
edge.bevel weight = 0.0

bpy.ops.object.editmode toggle ()

[—

To be continued on the next page...

Figure 6.5.2 The mesh_bevel.py script, part 2 (main procedure)

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 6 Others

133

The last part of this code contains the implementation of the Bevel operator and the add-on registration (Figure

6.5.3):

class Bevel (bpy.types.Operator) :
""" Bevels selected edges of the mesh'''

bl idname = "mesh.bevel"

bl label = "Bevel”

bl description = "Bevels selected edges"
bl options = {'REGISTER', 'UNDO'}

width = FloatProperty (name="Width'", description="Bevel width",

subtype = 'DISTANCE', default = 0.1, min = 0.0,
step = 1, precision = 2)
LAST WIDTH NAME = "mesh.bevel.last width"
@classmethod
def poll(cls,context):
return (context.mode == 'EDIT MESH'")

def invoke (self, context, event):

bpy.ops.object.editmode toggle ()
selected = list(filter (lambda e: e.select, context.object.data.edges))
bpy.ops.object.editmode toggle ()

if len(selected) > O:
last width = context.scene.get (self.LAST WIDTH NAME, None)
if last width:
self.width = last width
return self.execute (context)
else:
self.report (type='ERROR', message="No edges selected")
return { 'CANCELLED'}

def execute (self,context):
bevel (context.object, self.width)
context.scene[self.LAST WIDTH NAME] = self.width
return {'FINISHED'}

def menu_draw(self, context):
self.layout.operator context = 'INVOKE REGION WIN'
self.layout.operator (Bevel.bl idname, "Bevel')

def register():
register module(name)
bpy.types.VIEW3D MT edit mesh specials.prepend(menu_ draw)

def unregister():
bpy.types.VIEW3D MT edit mesh specials.remove (menu draw)

unregister module(name)
if name == ' main ':
register ()

Figure 6.5.3 the mesh_bevel.py script, part 3 (the add-on code)

Copyright Witold Jaworski, 2011.

134 Bibliography

Bibliography

Ksigzki
[1] Thomas Larsson, Code snippets.Introduction to Python scripting for Blender 2.5x, free e-book,
2010.
[2] Guido van Rossum, Python Tutorial, (part of Python electronic documentation), 2011
Internet
[1] http://www.blender.org
[2] http://www.python.org
[3] http://www.eclipse.org
4] http://www.pydev.org
[5] http://wiki.blender.org, in particular http://wiki.blender.org/index.php/Extensions:Py/Scripts

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

http://www.blender.org/
http://www.python.org/
http://www.eclipse.org/
http://www.pydev.org/
http://wiki.blender.org/
http://wiki.blender.org/index.php/Extensions:Py/Scripts

=

& Debug - Bevel/src/mesh,_bevel.py - Eclipse
File Edit Source Refactoring Mavigate Search Projeck Pydev Run window Help

} il S AF 3 -0 0 7 | %5 Debug | €@ PyDev
%5 Debug 52 = O || 6= variables 3 S5 Breakpoints | 7' Expressions 1 ¥ =0

113 T R = i 3 77 || Name Yalue
=] & Debug Server [Python Server] Globals Global variables
=] unknawn context Context: <bpy_struct, Context ak 0x01FS5D40 =
=] uj‘g MainThread - pid5936_seql event Event: <bpy_struct, Event at 0x021FSC98>
lask_width flaat: 0.10000000149011612
selected list: [bpy.data.meshes["Cube"].edges[4], bpy.data.meshes["Cube"].edges[s], bp
self Bewvel: <bpy_struck, MESH_OT_bevel("MESH_OT_bewel")=

= invoke [mesh_bevel.py:106]
B Debug Server

[P] mesh_bevel 3 - [F] bpy [F] pydev_debug

def invoke (self, context, event):

bpy.ops.object.editmode_toggle () D b
selected = list(filter (lawhda e: e. e ugger a.edges))

bpy.ops.object.editmode_toggle ()

if len(selected) > 0O:
last_width = context.scene.get (self.LAST WIDTH MNAME, None)
if last_width:
self.width = last_width

El consale 5% 2| Tasks [3_ Problems @ Executables

Debug Server
Debug Server at port: 5678

¥t Forcing tabs Writable Insert

))))] PyDev Package Explorer 2
If you already have some programming experience and intend to write an add- 2 & Bevel
on for Blender 3D, then this book is for you! g st

@ mesh_bevel.py
. . . . (== blender File
I am showing in it, how to arrange a convenient development environment to EaJbevel blend
== examples
i& mesh_intersection.py

Both elements are the Open Source software. It is a good combination that @ Python 3.2 (C:\Program FilesiPython32ipython exe)

write Python scripts for Blender. | use Eclipse IDE, enhanced with PyDev plugin.

provides all the tools shown on the illustrations around this text.

Project

scribes the process of writing a new add-on. | discuss in detail every phase of Exp | orer
the implementation, showing in this way not only the tools, but also the methods

The book contains a practical introduction to the Blender Python API. It de-

that | use. This description will allow you to gain more skill needed to write your
own scripts.

ISBN: 978-83-931754-2-0 Free electronic publication

5% outline 52 =0 bevel. edge_;e ight method = 'LARGEST'

Python API - Code Completion

bpy.ops.object.modifier move_up (modifier = hewvel.name)

Q@ context

< data
ops edge in obj.data.edges:

@types if edge.select:

@ bpy _struck edge.bevel weight = 1.0

@ Action

@ ActionActuatar -

@ AckionConstraink -ops.object.mo

(@ ActionFCurves 5 modifier_add def modifier_apply(apply_as="DATA', madifier=""):

i . " Apply modifi d from the stack
@ActionGroup edge in ob] o madfier_mave_up Ar;ﬁr:er;tos:”er and remove From the stac

@ ActionGroups if edge.sel {{imode_set{made, toggle) @apply_as (str): How to apply the modifier to the

[l actiorPosamarkers edge.be {Jmodfier_add{typs) geometry .)
=8 Actuat i . in [DATA', 'SHAPE'], (optional)
catar . el & @modifier {str): Name of the modifier to edit
& name bpy.ops.obiect. (@ modfier_corvert(madifier) {optional)
& pin (0 modifier _copyimadifier)
oF show_expanded {0 modifier_move_downmodifisrs
& type zlass Bevel (bpy.tv¥d () modifier_move_upimadifier) -

@ '*' Bevels sele <'" -
Q0 unlink, Bl _idnsme = "me Prass Ctil+Space For templates,

@ ActuatorSensor

	Table of Contents
	Introduction
	Conventions
	Preparations
	Chapter 1. Software Installation
	1.1 Python
	1.2 Eclipse
	1.3 PyDev

	Chapter 2. Introduction to Eclipse
	2.1 Creating a new project
	2.2 Writing the simplest script
	2.3 Debugging

	Creating the Blender Add-On
	Chapter 3. Basic Python Script
	3.1 The problem to solve
	3.2 Adapting Eclipse to the Blender API
	3.3 Developing the core code
	3.4 Launching and debugging Blender scripts
	3.5 Using Blender commands (operators)

	Chapter 4. Converting the Script into Blender Add-On
	4.1 Adaptation of the script structure
	4.2 Adding the operator command to a Blender menu
	4.3 Implementation of dynamic interaction with the user

	Appendices
	Chapter 5. Installation Details
	5.1 Details of Python installation
	5.2 Details of the Eclipse and PyDev installation
	5.3 Details of the PyDev configuration

	Chapter 6. Others
	6.1 Updating the Blender API predefinition files
	6.2 Importing an existing file to the PyDev project
	6.3 Details of the Blender scripts debugging
	6.4 What does contain the pydev_debug.py module?
	6.5 The full code of the mesh_bevel.py add-on

	Bibliography

